NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) # Colon Cancer Version 3.2023 — September 21, 2023 **NCCN.org** NCCN Guidelines for Patients® available at www.nccn.org/patients Continue **NCCN** Guidelines Index **Table of Contents** Discussion *Al B. Benson, III, MD/Chair † Robert H. Lurie Comprehensive Cancer Center of Northwestern University *Alan P. Venook, MD/Vice-Chair † ‡ UCSF Helen Diller Family Comprehensive Cancer Center Mahmoud M. Al-Hawary, MD ф University of Michigan Rogel Cancer Center Yi-Jen Chen, MD, PhD § City of Hope National Medical Center Kristen K. Ciombor, MD † Vanderbilt-Ingram Cancer Center *Stacev Cohen, MD † Fred Hutchinson Cancer Center *Harry S. Cooper, MD ≠ Fox Chase Cancer Center **Dustin Deming, MD †** University of Wisconsin Carbone Cancer Center Ignacio Garrido-Laguna, MD, PhD † Huntsman Cancer Institute at the University of Utah Jean L. Grem, MD † Fred & Pamela Buffett Cancer Center J. Randolph Hecht, MD † UCLA Jonsson Comprehensive Cancer Center Sarah Hoffe, MD § Moffitt Cancer Center Joleen Hubbard, MD † ‡ Mayo Clinic Comprehensive Cancer Center Steven Hunt, MD ¶ Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine Hisham Hussan, MD ¤ UC Davis Compréhensive Cancer Center William Jeck, MD ≠ Duke Cancer Institute Kimberly L. Johung, MD, PhD § Yale Cancer Center/Smilow Cancer Hospital Nora Joseph, MD ≠ University of Michigan Rogel Cancer Center Natalie Kirilcuk, MD ¶ Stanford Cancer Institute *Smitha Krishnamurthi, MD † Þ Case Comprehensive Cancer Center/ University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute Midhun Malla, MD, MS † O'Neal Comprehensive Cancer Center at UAB Jennifer Maratt, MD ¤ Indiana University Melvin and Bren Simon Comprehensive Cancer Center Wells A. Messersmith, MD † University of Colorado Cancer Center Jeffrey Meyerhardt, MD, MPH † Dana-Farber Brigham and Women's Cancer Center Eric D. Miller, MD, PhD § The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute Mary F. Mulcahy, MD ‡ † Robert H. Lurie Comprehensive Cancer Center of Northwestern University Steven Nurkin, MD, MS ¶ Roswell Park Comprehensive Cancer Center Michael J. Overman, MD † ‡ The University of Texas MD Anderson Cancer Center *Aparna Parikh, MD, MS † Mass General Cancer Center Hitendra Patel, MD † UC San Diego Moores Cancer Center Katrina Pedersen, MD, MS † Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine Leonard Saltz, MD † ‡ Þ Memorial Sloan Kettering Cancer Center Charles Schneider, MD † Abramson Cancer Center at the University of Pennsylvania *David Shibata, MD ¶ The University of Tennessee Health Science Center John M. Skibber, MD ¶ The University of Texas MD Anderson Cancer Center Constantinos T. Sofocleous, MD, PhD & Memorial Sloan Kettering Cancer Center Eden Stotsky-Himelfarb, BSN, RN † ¶ ¥ The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Anna Tavakkoli, MD, MSc ¤ **UT Southwestern Simmons** Comprehensive Cancer Center *Christopher G. Willett, MD § Duke Cancer Institute Grant Williams, MD, MSPH † O'Neal Comprehensive Cancer Center at UAB Christina Wu. MD † Mayo Clinic Comprehensive Cancer Center NCCN Frankie Algieri Lisa Gurski, PhD Jenna Snedeker, MS, ASCP Katie Stehman, MMS, PA-C **Continue** **NCCN Guidelines Panel Disclosures** φ Diagnostic/Interventional ≠ Pathology radiology ¥ Patient advocacy ¤ Gastroenterology § Radiotherapy/Radiation # Hematology/Hematology oncology oncology ¶ Surgery/Surgical oncology * Discussion Section Writing Medical oncology Committee NCCN Guidelines Index Table of Contents Discussion NCCN Colon Cancer Panel Members Summary of the Guidelines Updates ### Clinical Presentations and Primary Treatment: - Pedunculated or Sessile Polyp (Adenoma) with Invasive Cancer (COL-1) - Workup for Colon Cancer Appropriate for Resection (Non-metastatic)/Suspected or Proven Metastatic Adenocarcinoma (COL-2) - pMMR/MSS: Findings and Primary Treatment for Colon Cancer Appropriate for Resection (Non-metastatic) (COL-3) - pMMR/MSS: Pathologic Stage, Adjuvant Treatment (COL-4) - pMMR/MSS: Findings and Treatment for Suspected or Proven Metastatic Synchronous Adenocarcinoma (COL-5) - Surveillance (COL-8) - Recurrence and Workup (COL-9) - pMMR/MSS: Metachronous Metastases (COL-10) - dMMR/MSI-H: Deficient MMR (dMMR)/MSI-High (MSI-H) Colon cancer (Non-metastatic) (COL-12) - dMMR/MSI-H: Pathologic Stage, Adjuvant Treatment (COL-13) - dMMR/MSI-H: Findings and Treatment for Suspected or Proven Metastatic Synchronous Adenocarcinoma (COL-14) - dMMR/MSI-H: Metachronous Metastases (COL-15) Principles of Imaging (COL-A) Principles of Pathologic and Molecular Review (COL-B) Principles of Surgery (COL-C) Systemic Therapy for Advanced or Metastatic Disease (COL-D) Principles of Radiation and Chemoradiation Therapy (COL-E) Principles of Risk Assessment for Stage II Disease (COL-F) Principles of Adjuvant Therapy (COL-G) Principles of Survivorship (COL-H) Principles of Appendiceal Adenocarcinoma (COL-I) Staging (ST-1) Abbreviations (ABBR-1) Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. Find an NCCN Member Institution: https://www.nccn.org/home/member-institutions. NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise indicated. See NCCN Categories of Evidence and Consensus. ## **NCCN Categories of Preference:** All recommendations are considered appropriate. See <u>NCCN Categories of Preference</u>. The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient's care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2023. NCCN Guidelines Index Table of Contents Discussion Terminologies in all NCCN Guidelines are being actively modified to advance the goals of equity, inclusion, and representation. Updates in Version 3.2023 of the NCCN Guidelines for Colon Cancer from Version 2.2023 include: ### COL-11 - Regimen added: (Sotorasib or adagrasib) + (cetuximab or panitumumab) (KRAS G12C mutation positive) - Footnote added: If patient is unable to tolerate EGFR-inhibitor due to toxicity, single-agent adagrasib or sotorasib can be considered. (Also for COL-D 8 of 14) ### COL-B 4 of 8 - Principles of Pathologic and Molecular Review - ▶ Methods of Testing - ♦ Bullet 2 modified: ...should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation. ### **COL-D 2 of 14** • Regimen added: (Sotorasib or adagrasib) + (cetuximab or panitumumab) (KRAS G12C mutation positive) (Also for COL-D 2 through 6 of 14) ## **COL-D 12 of 14** • Regimens and dosing added for (sotorasib or adagrasib) + (cetuximab or panitumumab) ### **COL-D 14 of 14** - References added: - ▶ Yaeger R, Weiss J, Pelster M, et al. Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated KRAS G12C. N Engl J Med 2023;388:44-54 - ▶ Kuboki Y, Yaeger R, Fakih MG, et al. Sotorasib in combination with panitumumab in refractory KRAS G12C-mutated colorectal cancer: Safety and efficacy for phase Ib full expansion cohort. Ann Oncol 2022;33:S136-S196. ### **MS-1** • The Discussion section has been updated to reflect the changes in the algorithm. ## Updates in Version 2.2023 of the NCCN Guidelines for Colon Cancer from Version 1.2023 include: ## **COL-D 6 of 14** - Erratum: Irinotecan alone added back as a subsequent therapy option after inadvertent removal. MS-1 - The Discussion sections have been updated to reflect the changes in the algorithm: - ▶ Appendiceal Adenocarcinoma NCCN Guidelines Index Table of Contents Discussion ## Updates in Version 1.2023 of the NCCN Guidelines for Colon Cancer from Version 3.2022 include: ### Global: - Algorithm pages have been split by pMMR/MSS and dMMR/MSI-H. - New pages have been added for dMMR/MSI-H (COL-12 through COL-15; COL-D 7 of 14) with corresponding footnotes. - pMMR/MSS hás been added to the header on pages COL-3 through COL-11 - Terminologies modified to advance the goals of equity, inclusion, and representation. ### COL-1 - Workup - ▶ Bullet 3 revised: Marking of cancerous polyp site (at time of colonoscopy or within 2 weeks *if appropriate* if deemed necessary by the surgeon) - After surgery has been revised and separated into two options: - pMMR/MSS Pathologic Stage, Adjuvant Therapy, and Surveillance (COL-4) - Footnote d revised: It has not been established if molecular markers (other than MSI-H/dMMR) are useful in treatment determination (predictive markers) and prognosis... - Footnote g revised: ...but not lymph node metastasis) than polypoid pedunculated malignant polyps... ## COL-2 - Findings and Primary Treatment removed from this page. - Workup added for suspected or proven metastatic adenocarcinoma. COL-3 - Primary Treatment - ▶ Clinical T4b - ♦ Moved to dMMR/MSI-H section: ([Nivolumab ± ipilimumab] or pembrolizumab) (dMMR/MSI-H only), preferred - ▶ Locally unresectable or medically inoperable - ♦ Revised from "or Infusional 5-FU + RT or Capecitabine + RT" to "and Consider RT ± infusional
5-FU or capecitabine prior to surgery" ## COL-4 - Footnote r revised:localized perforation, or close, indeterminate, positive margins, or high-tier tumor budding. - Footnote u added: There is currently insufficient evidence to recommend use of circulating tumor DNA (ctDNA) assays outside of a clinical trial. De-escalation of care is not recommended based on ctDNA results. Participation in clinical trials is encouraged. (Also for COL-8) ### COL-6 - Treatment - ▶ Moved to dMMR/MSI-H section: Consider ([Nivolumab ± ipilimumab] or pembrolizumab [preferred]) (dMMR/MSI-H only) followed by synchronous or staged colectomy and resection (preferred) and/or local therapy of metastatic disease ### COL-7 - Systemic Therapy - ▶ FOLFIRINOX ± panitumumab or cetuximab removed as a treatment option. (Also for dosing on COL-D 9 of 14) - Moved to dMMR/MSI-H section: ([Nivolumab ± ipilimumab] or pembrolizumab [preferred]) (dMMR/MSI-H only) (Also for COL-11 and COL-D 1 of 14) ### COL-9 - Recurrence - Documented metachronous metastases by CT, MRI, and/or biopsy Pathways for resectable and unresectable have been split by pMMR/ MSS and dMMR/MSI-H ### **COL-10** - Heading modified: PRIMARY Initial Treatment (Also for COL-11) COL-11 - Modified: - ▶ Previous adjuvant FOLFOX/CAPEOX within past 12 months - ▶ Previous adjuvant FOLFOX/CAPEOX >12 months - Cetuximab or panitumumab qualifier revised: KRAS/NRAS/BRAF WT gene and left-sided tumors only (Also for COL-D) ### COL-14 Dostarlimab-gxly added as category 2A for neoadjuvant treatment of dMMR/MSI-H resectable synchronous liver only and/or lung only colorectal cancer metastases. ## **COL-15** Nivolumab ± ipilimumab, pembrolizumab, or dostarlimab-gxly added as category 2A primary treatment options for dMMR/MSI-H resectable metachronous colorectal cancer metastases with no previous immunotherapy. NCCN Guidelines Index Table of Contents Discussion ### Updates in Version 1.2023 of the NCCN Guidelines for Colon Cancer from Version 3.2022 include: #### **COL-B 1 of 8** - Endoscopically Removed Malignant Polyps - ▶ Bullet 2 revised: Favorable histologic features: grade 1 or 2 (low-grade histology according to WHO 2019)... - ▶ Bullet 3 revised: Unfavorable histologic features: grade 3 or 4 (high-grade histology according to WHO 2019), angiolymphatic invasion, or a "positive margin." See the positive margin definition above. In several studies, high tumor budding... ### COL-B 2 of 8 - Pathologic Stage (continued) - ▶ Bullet 4 revised: High tumor budding In recent years, high tumor budding has been identified as a new prognostic factor in colon cancer. ### COL-C 2 of 3 - Principles of Surgery - ▶ Bullet 8 revised for Liver and Lung: Conformal Ablative external beam radiation therapy EBRT may be considered... ### **COL-D 1 of 14** - Systemic Therapy for Advanced or Metastatic Disease - ▶ Heading added: pMMR/MSS (or ineligible for or progression on checkpoint inhibitor immunotherapy) (For COL-D 1 through 6 of 14) - ▶ Intensive therapy recommended - ♦ Treatment option added: CAPEOX + (cetuximab or panitumumab) (KRAS/NRAS/BRAF WT and left-sided tumors only) (Also for COL-D 3 of 14) - ▶ Preferred added to trifluridine/tipiracil + bevacizumab combination. (For COL-D 1 through 6 of 14) ## **COL-D 2 of 14** Regimen revised: Irinotecan + (cetuximab or panitumumab) (KRAS/ NRAS/BRAF WT only) Cetuximab or panitumumab (KRAS/NRAS/BRAF WT and left-sided tumors only) ± irinotecan (Also for COL-D 3 through 6 of 14) ## **COL-D 5 of 14** • FOLFIRINOX ± bevacizumab added as a subsequent therapy option. ## **COL-D 10 of 14** - Chemotherapy Regimens - **▶** FOLFIRINÓX - ♦ Irinotecan dose modified: ...irinotecan 180 165–180 mg/m² IV over 30–90 minutes on day 1... ### **COL-D 12 of 14** - Encorafenib + cetuximab - ▶ Alternate cetuximab dose added: or Cetuximab 500 mg/m² IV every 2 weeks ## **COL-D 14 of 14** • References have been updated. ### COL-E 1 of 2 - Treatment Information - ▶ Bullet 6, sub-bullet revised: Large bowel, stomach, and liver are critical structures that Appropriate organs at risk should be evaluated on the dose-volume histogram (DVH). ### COL-F - Principles of Risk Assessment for Stage II Disease - ▶ Bullet 2, sub-bullet revised: ...localized perforation; close, indeterminate, or positive margins, or high tumor budding) ### **COL-H 1 of 2** - Principles of Survivorship - ▶ Survivorship Care Planning - ♦ Sub-bullet added: Fertility counseling - ▶ Counseling Regarding Healthy Lifestyle and Wellness - ♦ Bullet 6 revised: Eliminate or limit alcohol consumption, no more than 1 drink/day for women, and 2 drinks/day for men. Drink alcohol sparingly, if at all. ### COL-I - New section added: Principles of Appendiceal Adenocarcinoma ABBR-1 - New section added: Abbreviations ## <u>MS-1</u> • The Discussion section has been updated to reflect the changes in the algorithm. ^a All patients with colon cancer should be counseled for family history and considered for risk assessment. For patients with suspected Lynch syndrome (LS), familial adenomatous polyposis (FAP), and attenuated FAP, see the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal. ^b Principles of Imaging (COL-A). Note: All recommendations are category 2A unless otherwise indicated. ^c Confirm the presence of invasive cancer (pT1). pTis has no biological potential to metastasize. ^d It has not been established if molecular markers (other than MSI-H/dMMR) are useful in treatment determination (predictive markers) and prognosis. College of American Pathologists Consensus Statement 1999. Prognostic factors in colorectal cancer. Arch Pathol Lab Med 2000;124:979-994. ^e Principles of Pathologic Review (COL-B 4 of 8) - MSI or MMR Testing. f Principles of Pathologic Review (COL-B) - Endoscopically removed malignant polyp. ⁹Observation may be considered, with the understanding that there is significantly greater incidence of adverse outcomes (residual disease, recurrent disease, mortality, hematogenous metastasis, but not lymph node metastasis) than pedunculated malignant polyps. Principles of Pathologic Review (COL-B) - Endoscopically removed malignant polyp. h Principles of Surgery (COL-C 1 of 3). **NCCN** Guidelines Index **Table of Contents** Discussion ### CLINICAL **PRESENTATION**^a ### WORKUP^j Biopsy MMR/MSI testing^e Pathology review^f - Colonoscopy Consider abdominal/pelvic MRI^{b,k} - Complete blood count (CBC), chemistry profile, carcinoembryonic antigen (CEA) - Chest/abdominal/pelvic CT^b - Enterostomal therapist as indicated for preoperative marking of site, teaching - PET/CT scan is not indicated^b - | Fertility risk discussion/counseling in appropriate patients ## Suspected or proven metastatic adenocarcinoma - Colonoscopy - Chest/abdominal/pelvic CT^b - CBC, chemistry profile, CEA - Determination of tumor gene status for RAS and BRAF mutations and HER2 amplifications (individually or as part of tissue- or blood-based next-generation sequencing [NGS] panel)^{l,m} - Determination of tumor (MMR) or (MSI) status^e (if not previously done) - Biopsy, if clinically indicated - Consider PET/CT scan (skull base to mid-thigh) if potentially surgically curable M1 disease in selected cases^b - ▶ Consider MRI of liver for liver metastases that are potentially resectable^b - If potentially resectable, then multidisciplinary team evaluation, including a surgeon experienced in the resection of hepatobiliary or lung metastases - ^a All patients with colon cancer should be counseled for family history and considered for risk assessment. For patients with suspected LS, FAP, and attenuated FAP, see the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal. - ^bPrinciples of Imaging (COL-A). - e Principles of Pathologic Review (COL-B 4 of 8) MSI or MMR Testing. - Frinciples of Pathologic Review (COL-B) Colon cancer appropriate for resection, pathologic stage, and lymph node evaluation. - For tools to aid in optimal assessment and care of older adults with cancer, see the NCCN Guidelines for Older Adult Oncology. - Routine DPYD testing prior to fluoropyrimidine therapy is not recommended at this time. See Discussion for more information. - k Consider an MRI to assist with the diagnosis of rectal cancer versus colon cancer (eq, low-lying sigmoid tumor). The rectum lies below a virtual line from the sacral promontory to the upper edge of the symphysis as determined by MRI. - Principles of Pathologic Review (COL-B 4 of 8) KRAS, NRAS, and BRAF Mutation Testing. - m If known RAS/RAF mutation, HER2 testing is not indicated. Tissue- or bloodbased NGS panels have the ability to pick up rare and actionable mutations and fusions. Note: All recommendations are category 2A unless otherwise indicated. ^a All patients with colon cancer should be counseled for family history and considered for risk assessment. For patients with suspected LS, FAP, and attenuated FAP, see the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal. ⁿ Principles of Radiation and Chemoradiation Therapy (COL-E). Note: All recommendations are category 2A unless otherwise indicated. b Principles of Imaging (COL-A). h Principles of Surgery (COL-C 1 of 3). ⁱ For tools to aid in optimal assessment and care of older adults with cancer, see the NCCN Guidelines for Older Adult Oncology. O Bolus 5-FU/leucovorin/RT is an option for patients not able to tolerate capecitabine or infusional 5-FU. **NCCN** Guidelines Index **Table of Contents** Discussion ^b Principles of Imaging (COL-A). S There are insufficient data to recommend the use of multi-gene assay panels to determine adjuvant therapy. U There is currently insufficient evidence to recommend routine use of circulating tumor DNA (ctDNA) assays outside of a clinical trial. De-escalation of care is not recommended based on ctDNA results. Participation in clinical trials is
encouraged. v Principles of Adjuvant Therapy (COL-G). w Consider RT for T4 with penetration to a fixed structure. Principles of Radiation and Chemoradiation Therapy (COL-E). X A survival benefit has not been demonstrated for the addition of oxaliplatin to 5-FU/leucovorin in stage II colon cancer. Tournigand C. et al. J Clin Oncol 2012;30:3353-3360. y A benefit for the addition of oxaliplatin to 5-FU/leucovorin in patients aged ≥70 years has not been proven. Note: All recommendations are category 2A unless otherwise indicated. Principles of Pathologic Review (COL-B). q Principles of Risk Assessment for Stage II Disease (COL-F). High-risk factors for recurrence (exclusive of those cancers that are MSI-H): poorly differentiated/undifferentiated histology; lymphatic/vascular invasion; bowel obstruction; <12 lymph nodes examined; perineural invasion (PNI); localized perforation; close, indeterminate, positive margins; or high-tier tumor budding. In high-risk stage II patients, there are no data that correlate risk features and selection of chemotherapy. t While non-inferiority of 3 mo vs. 6 mo of CAPEOX has not been proven, 3 mo of CAPEOX numerically appeared similar to 6 mo of CAPEOX for 5-year overall survival (82.1% vs. 81.2%; hazard ratio [HR], 0.96), with considerably less toxicity (Andre T, et al. Lancet Oncol 2020;21:1620-1629). These results support the use of 3 mo of adjuvant CAPEOX over 6 mo in the vast majority of patients with stage III colon cancer. In patients with colon cancer, staged as T1-3, N1 (low-risk stage III), 3 mo of CAPEOX is non-inferior to 6 mo for disease-free survival (DFS); non-inferiority of 3 mo vs. 6 mo of FOLFOX has not been proven. In patients with colon cancer staged as T4, N1-2 or T any, N2 (high-risk stage III), 3 mo of FOLFOX is inferior to 6 mo for DFS, whereas non-inferiority of 3 mo vs. 6 mo of CAPEOX has not been proven. Grade 3+ neurotoxicity rates are lower for patients who receive 3 mo vs. 6 mo of treatment (3% vs. 16% for FOLFOX; 3% vs. 9% for CAPEOX). Grothey A, et al. N Engl J Med 2018;378:1177-1188. Note: All recommendations are category 2A unless otherwise indicated. h Principles of Surgery (COL-C 2 of 3). ^z Consider colon resection only if imminent risk of obstruction, significant bleeding, perforation, or other significant tumor-related symptoms. NCCN Guidelines Index Table of Contents Discussion TREATMENT Resectable^h synchronous liver and/or lung metastases only pMMR/MSS ADJUVANT TREATMENT^b (UP TO 6 MO PERIOPERATIVE TREATMENT) (resected metastatic disease) Synchronous or staged colectomy^{aa} with liver or lung resection (preferred) and/or local therapy^{bb} or Neoadjuvant therapy (for 2–3 mo) FOLFOX (preferred) or CAPEOX (preferred) or FOLFIRI (category 2B) or FOLFIRINOX (category 2B) followed by synchronous or staged colectomy^{aa} and resection (preferred) and/or local therapy^{bb} of metastatic disease or Colectomy,^{aa} followed by chemotherapy (for 2–3 mo) FOLFOX (preferred) or CAPEOX (preferred) or FOLFIRI (category 2B) or FOLFIRINOX (category 2B) and staged resection (preferred) and/ or local therapy^{bb} of metastatic disease Note: All recommendations are category 2A unless otherwise indicated. ^bPrinciples of Imaging (COL-A). h Principles of Surgery (COL-C 2 of 3). aa Hepatic artery infusion ± systemic 5-FU/leucovorin (category 2B) is also an option at institutions with experience in both the surgical and medical oncologic aspects of this procedure. bb Resection is preferred over locally ablative procedures (eg, image-guided ablation or stereotactic body RT [SBRT]). However, these local techniques can be considered for liver or lung oligometastases (<u>COL-C</u> and <u>COL-E</u>). NCCN Guidelines Index Table of Contents Discussion TREATMENT Unresectable^h synchronous liver and/or lung metastases only pMMR/MSS ADJUVANT TREATMENT^b (UP TO 6 MO PERIOPERATIVE TREATMENT) - Systemic therapy - FOLFIRI or FOLFOX or CAPEOX or FOLFIRINOX ± bevacizumab^{cc,dd} or - ▶ FOLFIRI or FOLFOX ± panitumumab or cetuximab^{ee} (KRAS/NRAS/BRAF WT and left-sided tumors only)^{I,ff} - Consider colon resection^h only if imminent risk of obstruction, significant bleeding, perforation, or other significant tumorrelated symptoms Note: All recommendations are category 2A unless otherwise indicated. ^b Principles of Imaging (COL-A). h Principles of Surgery (COL-C 2 of 3). Principles of Pathologic Review (COL-B 4 of 8) - KRAS, NRAS, and BRAF Mutation Testing. ^{aa} Hepatic artery infusion ± systemic 5-FU/leucovorin (category 2B) is also an option at institutions with experience in both the surgical and medical oncologic aspects of this procedure. bb Resection is preferred over locally ablative procedures (eg, image-guided ablation or SBRT). However, these local techniques can be considered for liver or lung oligometastases (<u>COL-C</u> and <u>COL-E</u>). cc There should be at least a 6-week interval between the last dose of bevacizumab and elective surgery and re-initiation of bevacizumab at least 6 to 8 weeks postoperatively. There is an increased risk of stroke and other arterial events, especially in those aged ≥65 years. The use of bevacizumab may interfere with wound healing. ^{dd} An FDA-approved biosimilar is an appropriate substitute for bevacizumab. ^{ee} There are conflicting data regarding the use of FOLFOX + cetuximab in patients who have potentially resectable liver metastases. ff Cetuximab or panitumumab should only be used for left-sided tumors. The panel defines the left side of the colon as splenic flexure to rectum. Evidence suggests that patients with tumors originating on the right side of the colon (hepatic flexure through cecum) are unlikely to respond to cetuximab and panitumumab. Data on the response to cetuximab and panitumumab in patients with primary tumors originating in the transverse colon (hepatic flexure to splenic flexure) are lacking. 99 Principles of Radiation and Chemoradiation Therapy (COL-E). hh Biologic therapy is only appropriate for continuation of favorable response from conversion therapy. NCCN Guidelines Index Table of Contents Discussion ^a All patients with colon cancer should be counseled for family history and considered for risk assessment. For patients with suspected LS, FAP, and attenuated FAP, see the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal. Note: All recommendations are category 2A unless otherwise indicated. ^b Principles of Imaging (COL-A). ^u There is currently insufficient evidence to recommend routine use of ctDNA assays outside of a clinical trial. De-escalation of care is not recommended based on ctDNA results. Participation in clinical trials is encouraged. [∬] Villous polyp, polyp >1 cm, or high-grade dysplasia. kk Kahi CJ, et al. Gastroenterology 2016;150:758-768. If patient is a potential candidate for further intervention. ^b Principles of Imaging (COL-A). Note: All recommendations are category 2A unless otherwise indicated. h Principles of Surgery (COL-C 2 of 3). mm Determination of tumor gene status for RAS and BRAF mutations and HER2 amplifications (individually or as part of tissue- or blood-based NGS panel). If known RAS/RAF mutation, HER2 testing is not indicated. Determination of tumor MMR or MSI status (if not previously done). Principles of Pathologic Review (COL-B 4 of 8) - KRAS, NRAS, and BRAF Mutation Testing and Microsatellite Instability or Mismatch Repair Testing. NGS panels have the ability to pick up rare and actionable mutations and fusions. ⁿⁿ Patients should be evaluated by a multidisciplinary team including surgical consultation for potentially resectable patients. b Principles of Imaging (COL-A). Note: All recommendations are category 2A unless otherwise indicated. ^{aa} Hepatic artery infusion ± systemic 5-FU/leucovorin (category 2B) is also an option at institutions with experience in both the surgical and medical oncologic aspects of this procedure. bb Resection is preferred over locally ablative procedures (eg, image-guided ablation or SBRT). However, these local techniques can be considered for liver or lung oligometastases (<u>COL-C</u> and <u>COL-E</u>). ^b Principles of Imaging (COL-A). aspects of this procedure. Mutation Testing. h Principles of Surgery (COL-C 2 of 3). # NCCN Guidelines Version 3.2023 pMMR/MSS Colon Cancer NCCN Guidelines Index Table of Contents Discussion Surveillance **→**(COL-8) ADJUVANT TREATMENT^b (UP TO 6 MO PERIOPERATIVE TREATMENT) Systemic therapy ff Cetuximab or panitumumab should only be used for left-sided tumors The panel defines the left side of the colon as splenic flexure to rectum. Evidence suggests that patients with tumors originating on the right side of the colon (hepatic flexure through cecum) are unlikely to respond to cetuximab and panitumumab. Data on the response to cetuximab and panitumumab in patients with primary tumors originating in the transverse colon (hepatic flexure to splenic flexure) are lacking. hh Biologic therapy is only appropriate for continuation of favorable response from conversion therapy. ^{oo} For infection risk, monitoring, and prophylaxis recommendations for targeted therapies, see INF-A in the <u>NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections</u>. pp An FDA-approved biosimilar is an appropriate substitute for bevacizumab. qq Bevacizumab is the preferred anti-angiogenic agent based on toxicity and/or cost. rr An FDA-approved biosimilar is an appropriate substitute for trastuzumab ss Some activity was seen after a previous HER2-targeted regimen. May not be indicated in patients with underlying lung issues due to lung toxicity (2.6% report of deaths from interstitial lung disease). tt If patient is unable to tolerate EGFR-inhibitor due to toxicity, single-agent adagrasib or sotorasib can be considered. Note: All recommendations are category 2A unless otherwise indicated. or lung oligometastases (COL-C and COL-E). ⁿ Principles of Radiation and Chemoradiation Therapy
(COL-E). Principles of Pathologic Review (COL-B 4 of 8) - KRAS, NRAS, and BRAF ^{aa} Hepatic artery infusion ± systemic 5-FU/leucovorin (category 2B) is also an bb Resection is preferred over locally ablative procedures (eg, image-guided option at institutions with experience in both the surgical and medical oncologic ablation or SBRT). However, these local techniques can be considered for liver ^a All patients with colon cancer should be counseled for family history and considered for risk assessment. For patients with suspected LS, FAP, and attenuated FAP, see the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal. - b Principles of Imaging (COL-A). - h Principles of Surgery (COL-C 1 of 3). Note: All recommendations are category 2A unless otherwise indicated. ⁱ For tools to aid in optimal assessment and care of older adults with cancer, see the <u>NCCN Guidelines for Older Adult Oncology</u>. ⁿPrinciples of Radiation and Chemoradiation Therapy (COL-E). ^oBolus 5-FU/leucovorin/RT is an option for patients not able to tolerate capecitabine or infusional 5-FU. uu Patients with dMMR/MSI-H disease who are not candidates for immunotherapy should be treated as recommended for pMMR/MSS disease. See NCCN Guidelines for Management of Immunotherapy-Related Toxicities. VV Checkpoint inhibitor therapy options include: nivolumab ± ipilimumab or pembrolizumab. ### PATHOLOGIC STAGEP ### ADJUVANT TREATMENT^b Note: All recommendations are category 2A unless otherwise indicated. ^b Principles of Imaging (COL-A). Principles of Pathologic Review (COL-B). ^qPrinciples of Risk Assessment for Stage II Disease (COL-F). While non-inferiority of 3 mo vs. 6 mo of CAPEOX has not been proven, 3 mo of CAPEOX numerically appeared similar to 6 mo of CAPEOX for 5-year overall survival (82.1% vs. 81.2%; HR, 0.96), with considerably less toxicity. (Andre T, et al. Lancet Oncol 2020:21:1620-1629). These results support the use of 3 mo of adjuvant CAPEOX over 6 mo in the vast majority of patients with stage III colon cancer. In patients with colon cancer, staged as T1-3, N1 (low-risk stage III), 3 mo of CAPEOX is non-inferior to 6 mo for DFS; non-inferiority of 3 mo vs. 6 mo of FOLFOX has not been proven. In patients with colon cancer staged as T4, N1–2 or T any, N2 (high-risk stage III), 3 mo of FOLFOX is inferior to 6 mo for DFS, whereas non-inferiority of 3 mo vs. 6 mo of CAPEOX has not been proven. Grade 3+ neurotoxicity rates are lower for patients who receive 3 mo vs. 6 mo of treatment (3% vs. 16% for FOLFOX; 3% vs. 9% for CAPEOX). Grothey A, et al. N A benefit for the addition of oxaliplatin to 5-FU/leucovorin in patients aged 70 Engl J Med 2018;378:1177-1188. ^v Principles of Adjuvant Therapy (COL-G). w Consider RT for T4 with penetration to a fixed structure. Principles of Radiation and Chemoradiation Therapy (COL-E). years and older has not been proven. ^bPrinciples of Imaging (COL-A). Note: All recommendations are category 2A unless otherwise indicated. hPrinciples of Surgery (COL-C 2 of 3). ^zConsider colon resection only if imminent risk of obstruction, significant bleeding, perforation, or other significant tumor-related symptoms. ad Hepatic artery infusion ± systemic 5-FU/leucovorin (category 2B) is also an option at institutions with experience in both the surgical and medical oncologic aspects of this procedure. bb Resection is preferred over locally ablative procedures (eg, image-guided ablation or stereotactic body RT [SBRT]). However, these local techniques can be considered for liver or lung oligometastases (COL-C and COL-E). uu Patients with dMMR/MSI-H disease who are not candidates for immunotherapy should be treated as recommended for pMMR/MSS disease. See NCCN Guidelines for Management of Immunotherapy-Related Toxicities. ww Checkpoint inhibitor therapy options include: nivolumab ± ipilimumab, pembrolizumab, or dostarlimab-gxly. xx If no previous treatment with a checkpoint inhibitor. yy Data are limited and the risk of early progression may be higher than with chemotherapy. Andre T, et al. N Engl J Med 2020;383:2207-2218. ## ^bPrinciples of Imaging (COL-A). Note: All recommendations are category 2A unless otherwise indicated. ^{aa} Hepatic artery infusion ± systemic 5-FU/leucovorin (category 2B) is also an option at institutions with experience in both the surgical and medical oncologic aspects of this procedure. bb Resection is preferred over locally ablative procedures (eg, image-guided ablation or SBRT). However, these local techniques can be considered for liver or lung oligometastases (<u>COL-C</u> and <u>COL-E</u>). ^{uu} Patients with dMMR/MSI-H disease who are not candidates for immunotherapy should be treated as recommended for pMMR/MSS disease. See <u>NCCN</u> <u>Guidelines for Management of Immunotherapy-Related Toxicities</u>. ww Checkpoint Inhibitor therapy options include: nivolumab ± ipilimumab, pembrolizumab, or dostarlimab-gxly. NCCN Guidelines Index Table of Contents Discussion ## PRINCIPLES OF IMAGING1-3 ### Initial Workup/Staging - · Chest, abdomen, and pelvic CT - ▶ Evaluate local extent of tumor or infiltration into surrounding structures. - Assess for distant metastatic disease to lungs, thoracic and abdominal lymph nodes, liver, peritoneal cavity, and other organs. - ▶ CT should be performed with intravenous iodinated contrast and oral contrast material unless contraindicated. - ▶ Intravenous contrast is not required for the chest CT (but usually given if performed with abdominal CT scan). - If IV iodinated contrast material is contraindicated because of significant contrast allergy, then MR examination of the abdomen and pelvis with IV gadolinium-based contrast agent (GBCA) can be obtained instead. In patients with chronic renal failure (glomerular filtration rate [GFR] <30 mL/min) who are not on dialysis, IV iodinated contrast material is also contraindicated, and IV GBCA can be administered in select cases using gadofosveset trisodium, gadoxetate disodium, gadobenate dimeglumine, or gadoteridol. - If iodinated and gadolinium contrast are both contraindicated due to significant allergy or chronic renal failure without dialysis, then consider MR without IV contrast or consider PET/CT imaging. - Consider an abdominal/pelvic MRI to assist with the diagnosis of rectal cancer versus colon cancer (eg, low-lying sigmoid tumor). The rectum lies below a virtual line from the sacral promontory to the upper edge of the symphysis as determined by MRI. - Consider MRI of liver for liver metastases if potentially resectable. - PET/CT is not routinely indicated. - ▶ PET/CT does not supplant a contrast-enhanced diagnostic CT or MR and should only be used to evaluate an equivocal finding on a contrast-enhanced CT or MR scan or in patients with strong contraindications to IV contrast administration. - → Consider PET/CT (skull base to mid-thigh) - ♦ If potentially surgically curable M1 disease in selected cases. - ♦ In selected patients considered for image-guided liver-directed therapies (ie, ablation, radioembolization). 4-8 - If liver-directed therapy or surgery is contemplated, a hepatic MRI with intravenous routine extracellular or hepatobiliary GBCA is preferred over CT to assess exact number and distribution of metastatic foci for local treatment planning. ## **Monitoring** - Chest, abdomen, and pelvic CT with contrast - ▶ Prior to adjuvant treatment to assess response to primary therapy or resection - During re-evaluation of conversion to resectable disease - PET/CT can be considered for assessment of response and liver recurrence after image-guided liver-directed therapies (ie, ablation, radioembolization) **Continued** COL-A 1 OF 2 NCCN Guidelines Index Table of Contents Discussion ## PRINCIPLES OF IMAGING¹⁻³ ### Surveillance - Stage I disease - Imaging is not routinely indicated and should only be based on symptoms and clinical concern for recurrent/metastatic disease. - Stage II & III disease - ▶ Chest, abdomen, and pelvic CT every 6 to 12 months (category 2B for frequency <12 months) for a total of 5 years. - **▶** PET/CT is not indicated. - Stage IV disease - ▶ Chest, abdomen, and pelvic CT every 3 to 6 months (category 2B for frequency <6 months) x 2 years, then every 6 to 12 months for a total of 5 years. - ▶ PET/CT can be considered for assessment of response and liver recurrence after image-guided liver-directed therapies (ie, ablation, radioembolization) or serial CEA elevation during follow-up. Note: All recommendations are category 2A unless otherwise indicated. ¹ Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 2010;257:674-684. ² van Kessel CS, Buckens CF, van den Bosch MA, et al. Preoperative imaging of colorectal liver metastases after neoadjuvant chemotherapy: a meta-analysis. Ann Surg Oncol 2012;19:2805-2813. ³ACR Manual on Contrast Media v10.3 https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf. Accessed May 25, 2017. ⁴ Mauri G, Gennaro N, De Beni S, et al. Real-time US- ¹⁸ FDG-PET/CT image fusion for guidance of thermal ablation of ¹⁸ FDG-PET-positive liver metastases: the added value of contrast enhancement. Cardiovasc Intervent Radiol 2019;42:60-68. ⁵ Sahin DA, Agcaoglu O, Chretien C, et al. The utility of PET/CT in the management of patients with colorectal liver metastases undergoing laparoscopic radiofrequency thermal ablation. Ann Surg Oncol 2012;19:850-855. ⁶ Shady W, Kishore S, Gavane S, et al. Metabolic tumor volume and total lesion glycolysis on FDG-PET/CT can predict overall survival after (90)Y radioembolization of colorectal liver metastases: a comparison with SUVmax,
SUVpeak, and RECIST 1.0. Eur J Radiol 2016;85:1224-1231. ⁷ Shady W, Sotirchos VS, Do RK, et al. Surrogate imaging biomarkers of response of colorectal liver metastases after salvage radioembolization using 90Y-loaded resin microspheres. AJR Am J Roentgenol 2016;207:661-670. ⁸ Cornelis FH, Petre EN, Vakiani E, et al. Immediate postablation ¹⁸ F-FDG injection and corresponding SUV are surrogate biomarkers of local tumor progression after thermal ablation of colorectal carcinoma liver metastases. J Nucl Med 2018;59:1360-1365. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW ## **Endoscopically Removed Malignant Polyps** - A malignant polyp is defined as one with cancer invading through the muscularis mucosa and into the submucosa (pT1). pTis is not considered a "malignant polyp." - Favorable histologic features: grade 1 or 2 (low-grade histology according to WHO 2019), no angiolymphatic invasion, and negative margin of resection. There is no consensus as to the definition of what constitutes a positive margin of resection. A positive margin has been defined as: 1) tumor <1 mm from the transected margin; 2) tumor <2 mm from the transected margin; and 3) tumor cells present within the diathermy of the transected margin.¹⁻⁴ - Unfavorable histologic features: grade 3 or 4 (high-grade histology according to WHO 2019), angiolymphatic invasion, or a "positive margin." See the positive margin definition above. In several studies, high tumor budding has been shown to be an adverse histologic feature associated with adverse outcome and may preclude polypectomy as an adequate treatment of endoscopically removed malignant polyps. - There is controversy as to whether malignant colorectal polyps with a sessile configuration can be successfully treated by endoscopic removal. The literature seems to indicate that endoscopically removed sessile malignant polyps have a significantly greater incidence of adverse outcomes (residual disease, recurrent disease, mortality, and hematogenous metastasis, but not lymph node metastasis) than do pedunculated malignant polyps. However, when one closely looks at the data, configuration by itself is not a significant variable for adverse outcome, and endoscopically removed malignant sessile polyps with grade I or II histology, negative margins, and no lymphovascular invasion can be successfully treated with endoscopic polypectomy.³⁻⁷ ## **Colon Cancer Appropriate for Resection** • Histologic confirmation of primary colonic malignant neoplasm ## **Pathologic Stage** - The following parameters should be reported: - ▶ Grade of the cancer - **▶** Depth of penetration (T) - ▶ Number of lymph nodes evaluated and number positive (N) - ▶ Status of proximal, distal, radial, and mesenteric margins.^{8,9} See <u>Staging (ST-1)</u> - **▶** Lymphovascular invasion^{10,11} - ▶ Perineural invasion (PNI)¹²⁻¹⁴ - ▶ Tumor deposits¹⁵⁻¹⁸ Pathologic Stage (continued) on COL-B (2 of 8) **Lymph Node Evaluation on COL-B (3 of 8)** KRAS, NRAS, and BRAF Mutation Testing on COL-B (4 of 8) HER2-Testing and NTRK Fusions on COL-B (5 of 8) Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. <u>References</u> NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW ## Pathologic Stage (continued) - Radial (circumferential) margin evaluation The serosal surface (peritoneal) does not constitute a surgical margin. In colon cancer the circumferential (radial) margin represents the adventitial soft tissue closest to the deepest penetration of tumor, and is created surgically by blunt or sharp dissection of the retroperitoneal aspect. The radial margins should be assessed in all colonic segments with non-peritonealized surfaces. The circumferential resection margin corresponds to any aspect of the colon that is not covered by a serosal layer of mesothelial cells, and must be dissected from the retroperitoneum to remove the viscus. On pathologic examination it is difficult to appreciate the demarcation between a peritonealized surface and non-peritonealized surface. Therefore, the surgeon is encouraged to mark the area of non-peritonealized surface with a clip or suture. The mesenteric resection margin is the only relevant circumferential margin in segments completely encased by the peritoneum. 10,11 - PNI The presence of PNI is associated with a significantly worse prognosis. In multivariate analysis, PNI has been shown to be an independent prognostic factor for cancer-specific, overall, and disease-free survival (DFS). For stage II carcinoma, those with PNI have a significantly worse 5-year DFS compared to those without PNI (29% vs. 82%; *P* = .0005).¹²⁻¹⁴ - Tumor deposits Irregular discrete tumor deposits in pericolic or perirectal fat away from the leading edge of the tumor and showing no evidence of residual lymph node tissue, but within the lymphatic drainage of the primary carcinoma, are considered peritumoral deposits or satellite nodules and are not counted as lymph nodes replaced by tumor. Most examples are due to lymphovascular invasion or, more rarely, PNI. Because these tumor deposits are associated with reduced disease-free and overall survival, their number should be recorded in the surgical pathology report. This poorer outcome has also been noted in patients with stage III carcinoma. 15-18 - High tumor budding In recent years, high tumor budding has been identified as a new prognostic factor in colon cancer. Recently, there was an international consensus conference on tumor budding reporting.¹⁹ A tumor bud is defined as a single cell or a cluster of ≤4 cells detected by hematoxylin and eosin (H&E) at the advancing edge of the invasive carcinoma. The total number of buds should be reported from a selected hot spot measuring 0.785 mm (20x ocular in most microscopes/via a conversion factor). Budding is separated into three tiers: low tier (0–4 buds), intermediate tier (5–9 buds), and high tier (10 or more buds). Two recent studies^{20,21} using this scoring system have shown tumor budding to be an independent prognostic factor for stage II colon cancer. An ASCO guideline for stage II colon cancer designates tumor budding as an adverse (high-risk) factor.²² Several studies have shown that high-tier tumor budding in pT1 colorectal carcinomas, including malignant polyps, is associated with an increased risk of lymph node metastasis; however, methodologies for assessing tumor budding and tier were not uniform.²³⁻²⁷ Endoscopically Removed Malignant Polyps and Colon Cancer Appropriate for Resection on COL-B (1 of 8) Lymph Node Evaluation on COL-B (3 of 8) KRAS, NRAS, and BRAF Mutation Testing on COL-B (4 of 8) HER2 Testing and NTRK Fusions on COL-B (5 of 8) Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. **References** COL-B 2 OF 8 NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW ## **Lymph Node Evaluation** • The AJCC and College of American Pathologists recommend examination of a minimum of 12 lymph nodes to accurately stage colon cancers. 8,9,28 The literature lacks consensus as to what is the minimum number of lymph nodes to accurately identify stage II cancer. The minimum number of nodes has been reported as >7, >9, >13, >20, and >30.29-37 The number of lymph nodes retrieved can vary with patient age, gender, tumor grade, and tumor site. For stage II (pN0) colon cancer, if fewer than 12 lymph nodes are initially identified, it is recommended that the pathologist go back to the specimen and resubmit more tissue of potential lymph nodes. If 12 lymph nodes are still not identified, a comment in the report should indicate that an extensive search for lymph nodes was undertaken. The pathologist should attempt to retrieve as many lymph nodes as possible. It has been shown that the number of negative lymph nodes is an independent prognostic factor for patients with stage IIIB and IIIC colon cancer. 38 ## Sentinel Lymph Node and Detection of Micrometastasis by Immunohistochemistry (IHC) - Examination of the lymph nodes (sentinel or routine) by intense histologic and/or immunohistochemical investigation helps to detect the presence of metastatic disease. The detection of single cells by IHC or by multiple H&E levels and/or clumps of tumor cells <0.2 mm are considered isolated tumor cells (pN0). The 8th edition of the AJCC Cancer Staging Manual and Handbook³⁹ defines clumps of tumor cells ≥0.2 mm but ≤2 mm in diameter or clusters of 10 to 20 tumor cells as micrometastasis and recommends that these micrometastases be considered as standard positive lymph nodes (pN+). - At the present time the use of sentinel lymph nodes and detection of isolated tumor cells by IHC alone should be considered investigational, and results should be used with caution in clinical management decisions.⁴⁰⁻⁴⁹ Some studies have shown that the detection of IHC cytokeratin-positive cells in stage II (N0) colon cancer (defined by H&E) has a worse prognosis, while others have failed to show this survival difference. In some of these studies, what are presently defined as isolated tumor cells were considered to be micrometastases.⁴⁵⁻⁵⁰ A recent meta-analysis⁵¹ demonstrated that micrometastases (≥0.2 mm) are a significant poor prognostic factor. However, another recent multicenter prospective study of stage I or II disease (via H&E) had a 10% decrease in survival for IHC-detected isolated tumor cells, (<0.2 mm) but only in those with pT3-pT4 disease.⁵² Endoscopically Removed Malignant Polyps and Colon Cancer Appropriate for Resection on COL-B (1 of
8) Pathologic Stage on COL-B (2 of 8) KRAS, NRAS, and BRAF Mutation Testing on COL-B (4 of 8) HER2 Testing and NTRK Fusions on COL-B (5 of 8) Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. **References** COL-B 3 OF 8 NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW ## **Methods of Testing** • The testing can be performed on formalin-fixed paraffin-embedded tissue (preferred) or blood-based assay. ## KRAS, NRAS, and BRAF Mutation Testing - All patients with metastatic colorectal cancer should have tumor genotyped for RAS (KRAS and NRAS) and BRAF mutations individually or as part of an NGS panel. Patients with any known KRAS mutation (exons 2, 3, and 4) or NRAS mutation (exons 2, 3, and 4) should not be treated with either cetuximab or panitumumab, unless given as part of a regimen targeting a KRAS G12C mutation. 53-55 BRAF V600E mutation makes response to panitumumab or cetuximab highly unlikely unless given with a BRAF inhibitor. 56-58 - BRAF V600E mutation testing via IHC is also an option. - Testing for KRAS, NRAS, and BRAF mutations should be performed only in laboratories that are certified under the clinical laboratory improvement amendments of 1988 (CLIA-88) as qualified to perform high-complexity clinical laboratory (molecular pathology) testing. No specific methodology is recommended (eg, sequencing, hybridization). - The testing can be performed on the primary colorectal cancers and/or the metastasis, as literature has shown that the KRAS, NRAS, and BRAF mutations are similar in both specimen types.⁵⁹ ## Microsatellite Instability or Mismatch Repair Testing - Universal MMR^a or MSI^a testing is recommended in all newly diagnosed patients with colon cancer. <u>See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal.</u> - The presence of a *BRAF* V600E mutation in the setting of *MLH1* absence would preclude the diagnosis of Lynch syndrome (LS) in the vast majority of cases. However, approximately 1% of cancers with *BRAF* V600E mutations (and loss of *MLH1*) are LS. Caution should be exercised in excluding cases with a strong family history from germline screening in the case of *BRAF* V600E mutations.⁶⁰ - Stage II (MSI-H) cancers may have a good prognosis and do not benefit from 5-FU adjuvant therapy.⁶¹ - MMR or MSI testing should be performed only in CLIA-approved laboratories. - Testing for MSI may be accomplished by polymerase chain reaction (PCR) or a validated NGS panel, the latter especially in patients with metastatic disease who require genotyping of RAS and BRAF. - IHC refers to staining tumor tissue for protein expression of the four MMR genes known to be mutated in LS (*MLH1*, *MSH2*, *MSH6*, and *PMS2*). A normal IHC test implies that all four MMR proteins are normally expressed (retained). Loss (absence) of expression of one or more of the four DNA MMR proteins is often reported as abnormal or positive IHC. When IHC is reported as positive, caution should be taken to ensure that positive refers to absence of mismatch expression and not presence of expression. NOTE: Normal is the presence of positive protein staining (retained/intact) and abnormal is negative or loss of staining of protein. Loss of protein expression by IHC in any one of the MMR genes guides further genetic testing (mutation detection to the genes where the protein expression is not observed). Abnormal *MLH1* IHC should be followed by tumor testing for *BRAF* V600E mutation or *MLH1* promoter methylation. The presence of *BRAF* V600E mutation or *MLH1* promoter methylation is consistent with sporadic cancer. However, caution should be exercised in excluding cases from germline screening based on *BRAF* V600E mutations in the setting of a strong family history. ## HER2 Testing and NTRK Fusions on COL-B (5 of 8) ^a IHC for MMR and DNA analysis for MSI are different assays and measure different biological effects caused by dMMR function. Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. <u>References</u> COL-B 4 OF 8 NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW ### **HER2 Testing** - Diagnostic testing is via IHC, fluorescence in situ hybridization (FISH), or NGS. - Positive by IHC is defined as: 3+ staining in more than 50% of tumor cells. 3+ staining is defined as an intense membrane staining that can be circumferential, basolateral, or lateral. Those who have a HER2 score of 2+ should be reflexed to FISH testing. 62-64 HER2 amplification by FISH is considered positive when the HER2:CEP17 ratio is ≥2 in more than 50% of the cells. 62-64 NGS is another methodology for testing for HER2 amplification. 65 - Anti-HER2 therapy is only indicated in HER2-amplified tumors that are also RAS and BRAF wild-type. ### **NTRK** Fusions - NTRK fusions are extremely rare in colorectal carcinomas.⁶⁶ The overall incidence is approximately 0.35% in a cohort of 2314 colorectal carcinomas, with NTRK fusions confined to those tumors that are pan—wild-type KRAS, NRAS, and BRAF. In one study of 8 colorectal cancers harboring NTRK fusions, 7 were found in the small subset that were dMMR (MLH-1)/MSI-H.⁶⁷ NTRK fusions are more frequently found among patients with dMMR. - NTRK inhibitors have been shown to have activity ONLY in those cases with NTRK fusions, and NOT with NTRK point mutations. - Methodologies for detecting NTRK fusions are IHC, ⁶⁸ FISH, DNA-based NGS, and RNA-based NGS. ^{66,69} In one study, DNA-based sequencing showed an overall sensitivity and specificity of 81.1% and 99.9%, respectively, for detection of NTRK fusions when compared to RNA-based sequencing and IHC showed an overall sensitivity of 87.9% and specificity of 81.1%. Since approximately 1 in 5 tumors identified as having an NTRK fusion by IHC will be a false positive, tumors that test positive by IHC should be confirmed by RNA NGS. That same study commented that RNA-based sequencing appears to be the optimal way to approach NTRK fusions, because the splicing out of introns simplifies the technical requirements of adequate coverage and because detection of RNA-level fusions provides direct evidence of functional transcription. ⁶⁹ However, selection of the appropriate assay for NTRK fusion detection depends on tumor type and genes involved, as well as consideration of other factors such as available material, accessibility of various clinical assays, and whether comprehensive genomic testing is needed concurrently. ⁶⁹ KRAS, NRAS, and BRAF Mutation Testing on COL-B (4 of 8) **References** Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. COL-B 5 OF 8 NCCN Guidelines Index Table of Contents Discussion ### PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW – REFERENCES - ¹Volk EE, Goldblum JR, Petras RE, et al. Management and outcome of patients with invasive carcinoma arising in colorectal polyps. Gastroenterology 1995;109:1801-1807. - ²Cooper HS, Deppisch LM, Gourley WK, et al. Endoscopically removed malignant colorectal polyps: clinical pathological correlations. Gastroenterology 1995:108:1657-1665. - ³Ueno H, Mochizuki H, Hashiguchi Y, et al. Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology 2004;127:385-394. - ⁴ Seitz U, Bohnacker S, Seewald S, et al. Is endoscopic polypectomy an adequate therapy for malignant colorectal polyps? Presentation of 114 patients and review of the literature. Dis Colon Rectum 2004;47:1789-1797. - ⁵ Morson BC, Whiteway JE, Jones EA, et al. Histopathology and prognosis of malignant colorectal polyps treated by endoscopic polypectomy. Gut 1984;25:437-444. - ⁶ Haggitt RC, Glotzbach RE, Soffer EE, Wruble LD. Prognostic factors in colorectal carcinomas arising in adenomas: implications for lesions removed by endoscopic polypectomy. Gastroenterology 1985;89:328-336. - ⁷Netzer P, Binck J, Hammer B, et al. Significance of histological criteria for the management of patients with malignant colorectal polyps. Scand J Gastroenterol 1997;323:915-916. - ⁸ Compton CC and Greene FL. The staging of colorectal cancer: 2004 and beyond. Ca Cancer J Clin 2004;54:295-308. - ⁹Compton CC, Fielding LP, Burgardt LJ, et al. Prognostic factors in colorectal cancer. College of American pathologists consensus statement. Arch Pathol Lab Med 2000;124:979-994. - Washington MK, Berlin J, Branton P, et al. Protocol for examination of specimens from patients with primary carcinoma of the colon and rectum. Arch Pathol Lab Med 2009;133:1539. - ¹¹ Edge SB, Byrd D, Compton C, et al (eds). AJCC Cancer Staging Manual 7th Edition. Springer NY, 2010. - ¹² Liebig C, Ayala G, Wilks J, et al. Perineural invasion is an independent predictor of outcome in colorectal cancer. J Clin Oncol 2009;27:5131-5137. - ¹³ Fujita S, Shimoda T, Yoshimura K, et al. Prospective evaluation of prognostic factors in patients with colorectal cancer undergoing curative resection. J Surg Oncol 2003;84:127-131. - ¹⁴ Quah HM. Identification of patients with high risk stage II colon cancer for adjuvant therapy. Dis Colon Rect 2008;51:53-507. - ¹⁵ Goldstein NS and Turner JR. Pericolonic tumor deposits in patients with T3N+M0: adenocarcinoma. Cancer 2000;88:2228-2238. - ¹⁶ Ueno H, Mochizuki H, Hashiguchi Y, et al. Extramural cancer deposits without nodal structure in colorectal cancer: optimal categorization for prognostic staging. J Clin Pathol 2007;117:287-294. - ¹⁷ Lo DS, Pollett A, Siu LL, et al.
Prognostic significance of mesenteric tumor nodules in patients with stage III colorectal cancer. Cancer 2008;112:50-54. - ¹⁸ Puppa G, Maisonneuve P, Sonzogni A, et al. Pathological assessment of pericolonic tumor deposits in advanced colonic carcinoma: relevance to prognosis and tumor staging. Mod Pathol 2007;20:843-855. - ¹⁹ Lugli A, Kirsch R, Ajioka Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol 2017;30:1299-1311. - ²⁰ Lee VWK, Chan KF. Tumor budding and poorly-differentiated cluster in prognostication in Stage II colon cancer. Pathol Res Pract 2018;214:402-407. - ²¹ Romiti A, Roberto M, Marchetti P, et al. Study of histopathologic parameters to define the prognosis of stage II colon cancer. Int J Colorectal Dis 2019;34:905-913. - ²² Costas-Chavarri A, Nandakumar G, Temin S, et al. Treatment of patients with early-stage colorectal cancer: ASCO Resource-Stratified Guideline. J Glob Oncol 2019;5:1-19. - ²³ Koelzer VH, Zlobec I, Lugli A. Tumor budding in colorectal cancer ready for diagnostic practice? Hum Pathol 2016;47:4-19. - ²⁴ Bosch SL, Teerenstra S, de Wilt JH, et al. Predicting lymph node metastasis in pT1 colorectal cancer: a systematic review of risk factors providing rationale for therapy decisions. Endoscopy 2013;45:827-834. - ²⁵ Brown IS, Bettington ML, Bettington A, et al. Adverse histological features in malignant colorectal polyps: a contemporary series of 239 cases. J Clin Pathol 2016;69:292-299. - ²⁶ Backes Y, Elias SG, Groen JN, et al. Histologic factors associated with need for surgery in patients with pedunculated T1 colorectal carcinomas. Gastroenterology 2018;154:1647-1659. - ²⁷ Pai RK, Chen YW, Jakubowski MA, et al. Colorectal carcinomas with submucosal invasion (pT1): analysis of histopathological and molecular factors predicting lymph node metastasis. Mod Pathol 2017;30:113-122. - ²⁸ Sobin HL, and Greene FL. TNM classification. Clarification of number of regional lymph nodes for pN0. Cancer 2001;92:452. **Continued** Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. NCCN Guidelines Index Table of Contents Discussion ### PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW – REFERENCES - ²⁹ Le Voyer TE, Sigurdson ER, Hamlin AL, et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 2003;21:2912-2919. - ³⁰ Sarli L, Bader G, Lusco D, et al. Number of lymph nodes examined and prognosis of TNM stage II colorectal cancer. Eur J Cancer 2005;41:272-279. - 31 Swanson RS, Compton CC, Stewart AK, and Bland KI. The prognosis of T3N0 colon cancer is dependent on the number of lymph nodes examined. Ann Surg Oncol 2003;10:65-71. - ³² Caplin S, Scerottini G-P, Bosman FT, Konstanda MT, Givel J-C. For patients with Duke's B (TNM stage II) colorectal carcinoma, examination of six or fewer lymph nodes is related to poor prognosis. Cancer 1998;83:666-672. - ³³ Maurel J, Launoy G, Grosclaude P, et al. Lymph node harvest reporting in patients with carcinoma of the large bowel. A French population-based study. Cancer 1998;82:1482-1486. - ³⁴ Pocard M, Panis Y, Malassagane B, et al. Assessing the effectiveness of mesorectal excision in rectal cancer. Dis Colon Rectum 1998;41:839-845. - ³⁵ Joseph NE, Sigurdson ER, Hamlin AL, et al. Accuracy of determining nodal negativity in colorectal cancer on the basis of number of nodes retrieved on resection. Ann of Surg Oncol 2003;10:213-218. - ³⁶ Goldstein NS. Lymph node recurrences from 2427 pT3 colorectal resection specimens spanning 45 years. Recommendations for a minimum number of recovered lymph nodes based on predictive probabilities. Am J Surg Pathol 2002;26:179-189. - ³⁷ Scott KWM and Grace RH. Detection of lymph node metastasis and colorectal carcinoma before and after fat clearance. Br J Surg 1989;76:1165-1167. - ³⁸ Johnson PM, Porter GA, Ricciardi R, and Baxter NN. Increasing negative lymph node count is independently associated with improved long term survival in stage IIIB and IIIC colon cancer. J Clin Oncol 2006;24:3570-3575. - ³⁹ AJCC Cancer Staging Manual, 8th ed. Amin MB, Edge SB, Greene F, et al. (editors) Springer, New York, 2017. - ⁴⁰ Turner RR, Nora DT, Trochas D, and Bilchik AJ. Colorectal carcinoma in nodal staging. Frequency and nature of cytokeratin positive cells in sentinel and nonsentinel lymph nodes. Arch Pathol Lab Med 2003;127:673-679. - ⁴¹ Saha S, Van AG, Beutler T, et al. Sentinel lymph mapping techniques in colorectal cancer. Sem Oncol 2004;31:374-1381. - ⁴² Wood TF, Nora DT, Morton DL, et al. One hundred consecutive cases of sentinel node mapping in early colorectal carcinoma. Detection of missed micrometastasis. J Gastrointest Surg 2002;6:322-330. - ⁴³ Wiese DA, Sha S, Badin J, et al. Pathological evaluation of sentinel lymph nodes in colorectal carcinoma. Arch Pathol Lab Med 2000;124:1759-1763. - ⁴⁴ Bertagnolli M, Miedema B, Redstone M, et al. Sentinel node staging of resectable colon cancer. Results of a multicenter study. Ann Surg 2004;240:624-630. - ⁴⁵ Noura S, Yamamoto H, Ohnishi T, et al. Comparative detection of lymph node micrometastasis of stage II colorectal cancer by reverse transcriptase polymerase chain reaction in immunohistochemistry. J Clin Oncol 2002;20:4232-4241. - ⁴⁶ Yasuda K, Adachi Y, Shiraishi N, et al. Pattern of lymph node micrometastasis and prognosis of patients with colorectal cancer. Ann Surg Oncol 2001;8:300-304. - ⁴⁷ Noura S, Yamamoto H, Miyake Y, et al. Immunohistochemical assessment of localization of frequency of micrometastasis in lymph nodes of colorectal cancer. Clin Cancer Research 2002;8:759-767. - ⁴⁸ Oberg A, Stenling R, Tavelin B, Lindmark G. Are lymph node micrometastasis of any clinical significance in Duke stages A and B colorectal cancer? Dis Colon Rectum 1998;41:1244-1249. - ⁴⁹ Greenson JK, Isenhart TCE, Rice R, et al. Identification of occult micrometastasis in pericolonic lymph nodes of Duke's B colorectal cancer. Patient's using monoclonal antibodies against cytokeratin and CC49. Correlation with long term survival. Cancer 1994;73:563-569. - ⁵⁰ Hermanek P, Hutter RVP, Sobin LH, Wittekind CH. Classification of isolated tumor cells and micrometastasis. Cancer 1999;86:2668-2673. - ⁵¹ Sloothaak DA, Sahami S, van der Zaag-Loonen HJ, et al. The prognostic value of micrometastasis and isolated tumor cells in histologically negative lymph nodes of patients with colorectal cancer: a systematic review and meta-analysis. Eur J Surg Oncol 2014;40:263-269. - ⁵² Protic M, Stojadinovic A, Nissam A, et al. Prognostic effect of ultra-staging node negative colon cancer without adjuvant therapy. A prospective National Cancer Institute-Sponsored Clinical Trial. J Am Coll Surg 2015;221:643-631. - ⁵³ Lievre A, Bachatte J-B, Blige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with Cetuximab. J Clin Oncol 2008;26:374-379. **Continued** Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. NCCN Guidelines Index Table of Contents Discussion ### PRINCIPLES OF PATHOLOGIC AND MOLECULAR REVIEW - REFERENCES - ⁵⁴ Amado IG, Wolf M, Peters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:1626-1634. - ⁵⁵ Douillard JY, Oliner KS, Siena S, et al. Panitumumab--FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:1023-1034. - ⁵⁶ Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type *BRAF* is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:5705-5712. - ⁵⁷ Bokemeyer C, Cutsem EV, Rougier P, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: Pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012;48:1466-1475. - ⁵⁸ Pietrantonio F, Petrelli F, Coinu A, et al. Predictive role of *BRAF* mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 2015;51:587-594. - ⁵⁹ Etienne-Gimeldi M-C, Formenta J-L, Francoual M, et al. KRAS mutations in treatment outcome in colorectal cancer in patients receiving exclusive fluoropyrimidine. Clin Cancer Research 2008:14:4830-4835. - ⁶⁰ Parsons MT, Buchanan DD, Thompson B, et al. Correlation of tumor *BRAF* mutations and MLH-1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review accessions utility of tumor features for MMR variant classification. J Med Genet 2012;49:151-157. - ⁶¹ Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010;28:3219-3226. - ⁶² Valtorta E, Martino C, Sartore-Bianchi A, et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod Pathol 2015;28:1481-1491. - 63 Evaluation of Trastuzumab in Combination With Lapatinib or Pertuzumab in Combination With Trastuzumab-Emtansine to Treat Patients With HER2-positive Metastatic Colorectal Cancer (HERACLES). https://clinicaltrials.gov/ct2/show/NCT03225937 - ⁶⁴ Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17:738-746. - ⁶⁵ Cenaj O, Ligon AH,
Hornick JL, et al. Detection of ERBB2 amplification by next-generation sequencing predicts HER2 expression in colorectal carcinoma. Am J Clin Pathol 2019;152:97-108. - 66 Solomon J, Hechtman JF. Detection of NTRK fusions: Merits and limitations of current diagnostic platforms. Cancer Res 2019;79:3163-3168. - ⁶⁷ Cocco E, Benhamida J, Middha S, et al. Colorectal carcinomas containing hypermethylated MLH1 promotor and wild-type *BRAF/KRAS* are enriched for targetable kinase fusions. Cancer Res 2019;79:1047-1053. - ⁶⁸ Hechtman JF, Benayed R, Hyman DM, et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of *NTRK* fusions. Am J Surg Pathol 2017;41:1547-1551. - ⁶⁹ Solomon JP, Linkov I, Rosado A, et al. *NTRK* fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol 2020;33:38-46. Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF SURGERY ## Colectomy - Lymphadenectomy - ▶ Lymph nodes at the origin of feeding vessel(s) should be identified for pathologic examination. - Clinically positive lymph nodes outside the field of resection that are considered suspicious should be biopsied or removed, if possible. - ▶ Positive nodes left behind indicate an incomplete (R2) resection. - ▶ A minimum of 12 lymph nodes need to be examined to establish N stage. 1 - Minimally invasive approaches may be considered based on the following criteria²: - ▶ The surgeon has experience performing laparoscopically assisted colorectal operations.^{3,4} - Minimally invasive approaches are generally not indicated for locally advanced cancer or acute bowel obstruction or perforation from cancer. - ▶ Thorough abdominal exploration is required.⁵ - ▶ Consider preoperative marking of lesion(s). - Care of patients with carrier status of known or clinically suspected LS. - → Consider more extensive colectomy for patients with a strong family history of colon cancer or young age (<50 y). NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal. - Resection needs to be complete to be considered curative. <u>Criteria for Resectability of Metastases and Locoregional Therapies Within Surgery on COL-C (2 of 3)</u> Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. <u>References</u> NCCN Guidelines Index Table of Contents Discussion # PRINCIPLES OF SURGERY CRITERIA FOR RESECTABILITY OF METASTASES AND LOCOREGIONAL THERAPIES WITHIN SURGERY #### Liver - Hepatic resection is the treatment of choice for resectable liver metastases from colorectal cancer.⁶ - Complete resection must be feasible based on anatomic grounds and the extent of disease; maintenance of adequate hepatic function is required.⁷ - The primary tumor must have been resected for cure (R0). There should be no unresectable extrahepatic sites of disease.⁸⁻¹¹ Having a plan for a debulking resection (less than an R0 resection) is not recommended.⁷ - Patients with resectable metastatic disease and a primary tumor in place should have both sites resected with curative intent. These can be resected in one operation or as a staged approach, depending on the complexity of the hepatectomy or colectomy, comorbid diseases, surgical exposure, and surgeon expertise.¹² - When hepatic metastatic disease is not optimally resectable based on insufficient remnant liver volume, approaches using preoperative portal vein embolization,¹³ staged liver resection,¹⁴ or yttrium-90 radioembolization¹⁵ can be considered. - Ablative techniques may be considered alone or in conjunction with resection. All original sites of disease need to be amenable to ablation or resection. - Arterially directed catheter therapy, and in particular yttrium-90 microsphere selective internal radiation, is an option in highly selected patients with chemotherapy-resistant/-refractory disease and with predominant hepatic metastases. - Ablative external beam RT (EBRT) may be considered in highly selected cases or in the setting of a clinical trial and should not be used indiscriminately in patients who are potentially surgically resectable. - Re-resection can be considered in selected patients.¹⁶ #### Lung - Complete resection based on the anatomic location and extent of disease with maintenance of adequate function is required.¹⁷⁻²⁰ - The primary tumor must have been resected for cure (R0). - Resectable extrapulmonary metastases do not preclude resection. 21-24 - Re-resection can be considered in selected patients.²⁵ - Ablative techniques may be considered alone or in conjunction with resection for resectable disease. All original sites of disease need to be amenable to ablation or resection. - Ablative techniques can also be considered when unresectable and amenable to complete ablation. - Patients with resectable synchronous metastases can be resected synchronously or using a staged approach. - Ablative EBRT may be considered in highly selected cases or in the setting of a clinical trial and should not be used indiscriminately in patients who are potentially surgically resectable. ## **Evaluation for Conversion to Resectable or Ablatable Disease** - Re-evaluation for resection and ablation should be considered in otherwise unresectable patients after 2 months of preoperative chemotherapy and every 2 months thereafter.²⁶⁻²⁹ - Disease with a higher likelihood of being converted to resectable are those with initially convertible disease distributed within limited sites. - When considering whether disease has been converted to resectable, all original sites need to be amenable to resection.³⁰ - Preoperative chemotherapy regimens with high response rates should be considered for patients with potentially convertible disease.³¹ References Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF SURGERY - REFERENCES - ¹ LeVoyer TE, Sigurdson ER, Hanlon AL, et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 2003;21:2912-2919. - ² The Clinical Outcomes of Surgical therapy Study Group. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 2004;350:2050-2059. - ³ Wishner JD, Baker JW, Jr., Hoffman GC, et al. Laparoscopic-assisted colectomy. The learning curve. Surg Endosc 1995;9:1179-1183. - ⁴ Nelson H, Weeks JC, Wieand HS. Proposed phase III trial comparing laparoscopicassisted colectomy versus open colectomy for colon cancer. J Natl Cancer Inst Monogr 1995:51-56. - ⁵ Ota DM, Nelson H, Weeks JC. Controversies regarding laparoscopic colectomy for malignant diseases. Curr Opin Gen Surg 1994:208-213. - ⁶ Abdalla EK, Vauthey JN, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004;239:818-825; discussion 825-827. - ⁷ Charnsangavej C, Clary B, Fong Y, et al. Selection of patients for resection of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol 2006;13:1261-1268. - ⁸ Fong Y, Cohen AM, Fortner JG, et al. Liver resection for colorectal metastases. J Clin Oncol 1997:15:938-946. - ⁹ Nordlinger B, Quilichini MA, Parc R, Hannoun L, Delva E, Huguet C. Surgical resection of liver metastases from colo-rectal cancers. Int Surg 1987;72:70-72. - ¹⁰ Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999;230:309-318; discussion 318-321. - ¹¹ Choti MA, Sitzmann JV, Tiburi MF, et al. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 2002;235:759-66. - ¹² Reddy SK, Pawlik TM, Zorzi D, et al. Simultaneous resections of colorectal cancer and synchronous liver metastases: a multi-institutional analysis. Ann Surg Oncol 2007;14:3481-3491. - ¹³ Covey AM, Brown KT, Jarnagin WR, et al. Combined portal vein embolization and neoadjuvant chemotherapy as a treatment strategy for resectable hepatic colorectal metastases. Ann Surg 2008;247:451-455. - ¹⁴ Adam R, Miller R, Pitombo M, et al. Two-stage hepatectomy approach for initially unresectable colorectal hepatic metastases. Surg Oncol Clin N Am 2007;16:525-536, viii. - ¹⁵ Teo JY, Allen JC, Jr, Ng DC, et al. A systematic review of contralateral liver lobe hypertrophy after unilobar selective internal radiation therapy with Y90. HPB (Oxford) 2016;18:7-12. - ¹⁶ Adam R, Bismuth H, Castaing D, et al. Repeat hepatectomy for colorectal liver metastases. Ann Surg 1997;225:51-62. - ¹⁷ McAfee MK, Allen MS, Trastek VF, Ilstrup DM, Deschamps C, Pairolero PC. Colorectal lung metastases: results of surgical excision. Ann Thorac Surg 1992;53:780-785; discussion 785-786. - ¹⁸ Regnard JF, Grunenwald D, Spaggiari L, et al. Surgical treatment of hepatic and pulmonary metastases from colorectal cancers. Ann Thorac Surg 1998;66:214-218; discussion 218-219. - ¹⁹ Inoue M, Kotake Y, Nakagawa K, Fujiwara K, Fukuhara K, Yasumitsu T. Surgery for pulmonary metastases from colorectal carcinoma. Ann Thorac Surg 2000;70:380-383. - ²⁰ Sakamoto T, Tsubota N, Iwanaga K, Yuki T, Matsuoka H, Yoshimura M. Pulmonary resection for metastases from colorectal cancer. Chest 2001;119:1069-1072. - ²¹ Rena O, Casadio C, Viano F, et al. Pulmonary resection for metastases from colorectal cancer: factors influencing prognosis. Twenty-year experience. Eur J Cardiothorac Surg 2002;21:906-912. - ²² Irshad
K, Ahmad F, Morin JE, Mulder DS. Pulmonary metastases from colorectal cancer: 25 years of experience. Can J Surg 2001;44:217-221. - ²³ Ambiru S, Miyazaki M, Ito H, et al. Resection of hepatic and pulmonary metastases in patients with colorectal carcinoma. Cancer 1998;82:274-278. - ²⁴ Yano T, Hara N, Ichinose Y, Yokoyama H, Miura T, Ohta M. Results of pulmonary resection of metastatic colorectal cancer and its application. J Thorac Cardiovasc Surg 1993;106:875-879. - ²⁵ Hendriks JM, Romijn S, Van Putte B, et al. Long-term results of surgical resection of lung metastases. Acta Chir Belg 2001;101:267-272. - ²⁶ Adam R, Avisar E, Ariche A, et al. Five-year survival following hepatic resection after neoadjuvant therapy for nonresectable colorectal. Ann Surg Oncol 2001;8:347-353. - ²⁷ Rivoiré M, De Cian F, Meeus P, Negrier S, Sebban H, Kaemmerlen P. Combination of neoadjuvant chemotherapy with cryotherapy and surgical resection for the treatment of unresectable liver metastases from colorectal carcinoma. Cancer 2002;95:2283-2292. - ²⁸ Vauthey JN, Pawlik TM, Ribero D, et al. Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 2006;24:2065-2072. - ²⁹ Pawlik TM, Olino K, Gleisner AL, et al. Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome. J Gastrointest Surg 2007:11:860-868. - ³⁰ Benoist S, Brouquet A, Penna C, et al. Complete response of colorectal liver metastases after chemotherapy: does it mean cure? J Clin Oncol 2006;24:3939-3945. - 31 Bartlett DL, Berlin J, Lauwers GY, et al. Chemotherapy and regional therapy of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol. 2006;13:1284-1292. Note: All recommendations are category 2A unless otherwise indicated. For dMMR/MSI-H see COL-D (7 of 14) Footnotes COL-D (8 of 14) Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion NCCN Guidelines Index Table of Contents Discussion Note: All recommendations are category 2A unless otherwise indicated. Note: All recommendations are category 2A unless otherwise indicated. # Comprehensive Cancer Colon Cancer ### CONTINUUM OF CARE - SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE^{a,b,n} Footnotes COL-D (8 of 14) Note: All recommendations are category 2A unless otherwise indicated. # NCCN Guidelines Version 3.2023 dMMR/MSI-H Colon Cancer NCCN Guidelines Index Table of Contents Discussion ### CONTINUUM OF CARE - SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE^{a,b} dMMR/MSI-H Any line of therapy Footnotes COL-D (8 of 14) Note: All recommendations are category 2A unless otherwise indicated. ^{*} Patients should be followed closely for 10 weeks to assess for response. NCCN Guidelines Index Table of Contents Discussion #### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE - FOOTNOTES - ^a For chemotherapy references, see Chemotherapy Regimens and References (COL-D [9 of 14]). - ^b For infection risk, monitoring, and prophylaxis recommendations for targeted therapies, see INF-A in the NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections. - ^c Chest/abdominal/pelvic CT with contrast or chest CT and abdominal/pelvic MRI with contrast to monitor progress of therapy. PET/CT should not be used. Principles of Imaging (COL-A). - d Discontinuation of oxaliplatin should be strongly considered after 3 to 4 months of therapy (or sooner for unacceptable neurotoxicity) while maintaining other agents until time of progression. Oxaliplatin may be reintroduced if it was discontinued for neurotoxicity rather than for disease progression. - ^e An FDA-approved biosimilar is an appropriate substitute for bevacizumab. - f Principles of Pathologic Review (COL-B 4 of 8). - ⁹ Cetuximab or panitumumab should only be used for left-sided tumors. The panel defines the left side of the colon as splenic flexure to rectum. Evidence suggests that patients with tumors originating on the right side of the colon (hepatic flexure through cecum) are unlikely to respond to cetuximab and panitumumab. Data on the response to cetuximab and panitumumab in patients with primary tumors originating in the transverse colon (hepatic flexure to splenic flexure) are lacking. - h Irinotecan should be used with caution in patients with Gilbert syndrome or elevated serum bilirubin. There is a commercially available test for *UGT1A1*. Guidelines for use in clinical practice have not been established. - FOLFIRINOX should be strongly considered for patients with excellent performance status. - J FOLFIRINOX is recommended instead of FOLFOXIRI because FOLFOXIRI uses a high dose of 5-FU (3,200 mg/m² over 48 hours). Patients in the United States have been shown to have greater toxicity with 5-FU. The dose of 5-FU (2,400 mg/m² over 46 hours) is a starting dose consistent with the dose recommended in FOLFOX or FOLFIRI and should be strongly considered for U.S. patients. - ^k An FDA-approved biosimilar is an appropriate substitute for trastuzumab. - If no previous treatment with HER2 inhibitor. - m The use of single-agent capecitabine after progression on a fluoropyrimidine-containing regimen has been shown to be ineffective; therefore, this is not recommended. - ⁿ Arterially directed catheter therapy, and in particular yttrium-90 microsphere selective internal radiation, is an option in highly selected patients with chemotherapy-resistant/-refractory disease and with predominant hepatic metastases. Principles of Surgery (COL-C). - O Larotrectinib or entrectinib are treatment options for patients with metastatic colorectal cancer that is *NTRK* gene fusion-positive. Selpercatinib is a treatment option for patients with metastatic colorectal cancer that is *RET* gene fusion-positive. - P If patients had therapy stopped for reasons other than progression (eg, cumulative toxicity, elective treatment break, patient preference), rechallenge is an option at time of progression. - ^q Bevacizumab is the preferred anti-angiogenic agent based on toxicity and/or cost. - There are no data to suggest activity of FOLFIRI-ziv-aflibercept or FOLFIRI-ramucirumab in a patient who has progressed on FOLFIRI-bevacizumab, or vice versa. Ziv-aflibercept and ramucirumab have only shown activity when given in conjunction with FOLFIRI in FOLFIRI-naïve patients. - S Cetuximab or panitumumab are recommended in combination with irinotecan-based therapy or as single-agent therapy for patients who cannot tolerate irinotecan. - ^t In the second-line setting for BRAF V600E mutation positive tumors, there is phase 3 evidence for better efficacy with targeted therapies over FOLFIRI. - ^u Some activity was seen after a previous HER2-targeted regimen. May not be indicated in patients with underlying lung issues due to lung toxicity (2.6% report of deaths from interstitial lung disease). - V Regorafenib or trifluridine + tipiracil with or without bevacizumab are treatment options for patients who have progressed through all available regimens. - W If not previously given. - X Checkpoint inhibitor therapy options include: nivolumab ± ipilimumab, pembrolizumab, or dostarlimab-gxly. Nivolumab + ipilimumab combination is category 2B when intensive therapy is not recommended due to toxicity concerns. - ^y Nivolumab ± ipilimumab are FDA approved for colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. However, a number of patients in the clinical trials had not received all three prior systemic therapies. Thirty-seven percent of patients received nivolumab monotherapy and 24% received ipilimumab/nivolumab combination therapy in first- or second-line, and 28% and 31% of patients had not received all three indicated prior therapies before treatment with nivolumab or ipilimumab/nivolumab, respectively. - ² NCCN Guidelines for Management of Immunotherapy-Related Toxicities. - aa If disease response, consider discontinuing checkpoint inhibitor after 2 years of treatment. - bb If patient is unable to tolerate EGFR-inhibitor due to toxicity, single-agent adagrasib or sotorasib can be considered. Note: All recommendations are category 2A unless otherwise indicated. **NCCN** Guidelines Index **Table of Contents** Discussion #### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE - CHEMOTHERAPY REGIMENS mFOLFOX 6^{1,2,3} Oxaliplatin 85 mg/m² IV day 1^{cc} Leucovorin 400 mg/m² IV day 1^{dd} 5-FU 400 mg/m² IV bolus on day 1, followed by 1200 mg/m²/day x 2 days (total 2400 mg/m² over 46-48 hours) IV continuous infusion Repeat every 2 weeks mFOLFOX 74 Oxaliplatin 85 mg/m² IV day 1^{cc} Leucovorin 400 mg/m² IV day 1^{dd} 5-FU 1200 mg/m²/day x 2 days (total 2400 mg/m² over 46-48 hours) IV continuous infusion Repeat every 2 weeks FOLFOX + bevacizumab^{5,e,ee} Bevacizumab 5 mg/kg IV, day 1 Repeat every 2 weeks FOLFOX + panitumumab⁶ (KRAS/NRAS/BRAF WT and left-sided tumors only) Panitumumab 6 mg/kg IV over 60 minutes, day 1 Repeat every 2 weeks FOLFOX + cetuximab⁷ (KRAS/NRAS/BRAF WT and left-sided tumors only) Cetuximab 400 mg/m² IV over 2 hours first infusion, followed by 250 mg/m² IV over 60 minutes weekly or Cetuximab 500 mg/m² IV over 2 hours, day 1, every 2 weeks (preferred for every 2 weeks) CAPEOX8 Oxaliplatin 130 mg/m² IV day 1^{cc} Capecitabine 1000ff mg/m² twice daily PO for 14 days Repeat every 3 weeks CAPEOX + bevacizumab^{8,e,ee} Oxaliplatin 130 mg/m² IV day 1^{cc} Capecitabine 1000^{ff} mg/m² PO twice daily for 14 days Bevacizumab 7.5 mg/kg IV day 1 Repeat every 3 weeks FOLFIRI9,10 Irinotecan 180 mg/m² IV over 30-90 minutes, day 1 Leucovorin^{dd} 400 mg/m² IV infusion to match duration of irinotecan infusion, day 1 5-FU 400 mg/m² IV bolus day 1, followed by 1200 mg/m²/day x 2 days (total 2400 mg/m² over 46-48 hours) continuous infusion Repeat every 2 weeks FOLFIRI + bevacizumab^{11,e,ee} Bevacizumab 5 mg/kg IV, day 1
Repeat every 2 weeks FOLFIRI + cetuximab (KRAS/NRAS/BRAF WT and left-sided tumors only) Cetuximab 400 mg/m² IV over 2 hours first infusion, followed by 250 mg/m² IV over 60 minutes weekly 12 or Cetuximab 500 mg/m² IV over 2 hours, day 1, every 2 weeks¹³ (preferred for every 2 weeks) ee Bevacizumab may be safely given at a rate of 0.5 mg/kg/min (5 mg/kg over 10 minutes and 7.5 mg/kg over 15 minutes). Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. Continued References ^e An FDA-approved biosimilar is an appropriate substitute for bevacizumab. cc Oxaliplatin may be given either over 2 hours, or may be infused over a shorter time at a rate of 1 mg/m²/min. Leucovorin infusion should match infusion time of oxaliplatin. Cercek A, Park V, Yaeger R, et al. Faster FOLFOX: oxaliplatin can be safely infused at a rate of 1 mg/m²/min. J Oncol Pract 2016;12:e548-553. dd Leucovorin 400 mg/m² is the equivalent of levoleucovorin 200 mg/m². ff The majority of safety and efficacy data for this regimen have been developed in Europe, where a capecitabine starting dose of 1000 mg/m² twice daily for 14 days, repeated every 21 days, is standard. Evidence suggests that North American patients may experience greater toxicity with capecitabine (as well as with other fluoropyrimidines) than European patients, and may require a lower dose of capecitabine. NCCN Guidelines Index Table of Contents Discussion #### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE - CHEMOTHERAPY REGIMENS FOLFIRI + panitumumab¹⁴ (*KRAS/NRAS/BRAF* WT and left-sided tumors only) Panitumumab 6 mg/kg IV over 60 minutes, day 1 Repeat every 2 weeks FOLFIRI + ziv-aflibercept¹⁵ Ziv-aflibercept 4 mg/kg IV over 60 minutes, day 1 Repeat every 2 weeks FOLFIRI + ramucirumab¹⁶ Ramucirumab 8 mg/kg over 60 minutes, day 1 Repeat every 2 weeks ### FOLFIRINOX^{17,j} Oxaliplatin 85 mg/m² IV day $1,^{cc}$ leucovorin 400 mg/m² IV over 2 hours on day 1, irinotecan 165–180 mg/m² IV over 30–90 minutes on day 1, 5-FU 400 mg/m² IV push day 1, 5-FU 1200 mg/m²/day x 2 days (total 2400 mg/m² over 46 hours) continuous infusion. Repeat every 2 weeks ### Modified FOLFIRINOX^{18,19,j} Oxaliplatin 85 mg/m² IV on day 1,^{cc} leucovorin 400 mg/m² IV over 2 hours on day 1, irinotecan 150 mg/m² IV over 30–90 minutes on day 1, 5-FU 1200 mg/m²/day x 2 days (total 2400 mg/m² over 46 hours) continuous infusion. Repeat every 2 weeks FOLFIRINOX or mFOLFIRINOX + bevacizumab^{20,e,ee} Bevacizumab 5 mg/kg IV, day 1 Repeat every 2 weeks IROX²¹ Oxaliplatin 85 mg/m² IV, cc followed by irinotecan 200 mg/m² over 30-90 minutes every 3 weeks IROX + bevacizumab^{e,ee} Bevacizumab 7.5 mg/kg IV on day 1 Repeat every 3 weeks Bolus or infusional 5-FU/leucovorin Roswell Park regimen²² Leucovorin 500 mg/m² IV over 2 hours, days 1, 8, 15, 22, 29, and 36 5-FU 500 mg/m² IV bolus 1 hour after start of leucovorin, days 1, 8, 15, 22, 29, and 36 Repeat every 8 weeks Simplified biweekly infusional 5-FU/leucovorin (sLV5FU2)⁹ Leucovorin^{dd} 400 mg/m² IV over 2 hours on day 1, followed by 5-FU bolus 400 mg/m² followed by 1200 mg/m²/day x 2 days (total 2400 mg/m² over 46–48 hours) continuous infusion Repeat every 2 weeks Weekly Leucovorin 20 mg/m² IV over 2 hours on day 1, 5-FU 500 mg/m² IV bolus injection 1 hour after the start of leucovorin. Repeat weekly²³ or 5-FU 2600 mg/m 2 by 24-hour infusion plus leucovorin 500 mg/m 2 Repeat every week 23 Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. **Continued References** COL-D 10 OF 14 ^e An FDA-approved biosimilar is an appropriate substitute for bevacizumab. ^j FOLFIRINOX is recommended instead of FOLFOXIRI because FOLFOXIRI uses a high dose of 5-FU (3,200 mg/m² over 48 hours). Patients in the United States have been shown to have greater toxicity with 5-FU. The dose of 5-FU (2,400 mg/m² over 46 hours) is a starting dose consistent with the dose recommended in FOLFOX or FOLFIRI and should be strongly considered for U.S. patients. cc Oxaliplatin may be given either over 2 hours, or may be infused over a shorter time at a rate of 1 mg/m²/min. Leucovorin infusion should match infusion time of oxaliplatin. Cercek A, Park V, Yaeger R, et al. Faster FOLFOX: oxaliplatin can be safely infused at a rate of 1 mg/m²/min. J Oncol Pract 2016;12:e548-553. dd Leucovorin 400 mg/m² is the equivalent of levoleucovorin 200 mg/m². ee Bevacizumab may be safely given at a rate of 0.5 mg/kg/min (5 mg/kg over 10 minutes and 7.5 mg/kg over 15 minutes). NCCN Guidelines Index Table of Contents Discussion #### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE - CHEMOTHERAPY REGIMENS Bolus or infusional 5-FU + bevacizumab^{e,ee} Bevacizumab 5 mg/kg IV on day 1 Repeat every 2 weeks Capecitabine 24,ff Capecitabine 850–1250 mg/m² PO twice daily for 14 days Repeat every 3 weeks Capecitabine + bevacizumab^{25,e,ee} Bevacizumab 7.5 mg/kg IV, day 1 Repeat every 3 weeks Irinotecan Irinotecan 125 mg/m² IV over 30–90 minutes, days 1 and 8 Repeat every 3 weeks^{26,27} or Irinotecan 180 mg/m² IV over 30–90 minutes, day 1 Repeat every 2 weeks or Irinotecan 300–350 mg/m² IV over 30–90 minutes, day 1 Repeat every 3 weeks Irinotecan + cetuximab (*KRAS/NRAS/BRAF* WT and left-sided tumors only) Cetuximab 400 mg/m² first infusion, followed by 250 mg/m² IV weekly²⁸ or Cetuximab 500 mg/m² IV over 2 hours, day 1, every 2 weeks¹³ (preferred for every 2 weeks) Irinotecan + panitumumab^{14,29} (KRAS/NRAS/BRAF WT and left-sided tumors only) Panitumumab 6 mg/kg IV over 60 minutes every 2 weeks Irinotecan + bevacizumab^{30,e,ee} Irinotecan 180 mg/m² IV, day 1 Bevacizumab 5 mg/kg IV, day 1 Repeat every 2 weeks or Irinotecan 300–350 mg/m² IV, day 1 Bevacizumab 7.5 mg/kg IV, day 1 Repeat every 3 weeks Irinotecan + ramucirumab¹⁶ Ramucirumab 8 mg/kg IV over 60 minutes every 2 weeks Irinotecan + ziv-aflibercept Irinotecan 180 mg/m² IV, day 1 Ziv-aflibercept 4 mg/kg IV, day 1 Repeat every 2 weeks Cetuximab (*KRAS/NRAS/BRAF* WT and left-sided tumors only) Cetuximab 400 mg/m² first infusion, followed by 250 mg/m² IV weekly²⁸ or Cetuximab 500 mg/m² IV over 2 hours, day 1, every 2 weeks¹³ (preferred for every 2 weeks) Panitumumab³¹ (*KRAS/NRAS/BRAF* WT and left-sided tumors only) Panitumumab 6 mg/kg IV over 60 minutes every 2 weeks Regorafenib 160 mg PO daily on days 1–21³² or First cycle: Regorafenib 80 mg PO daily on days 1–7, followed by 120 mg PO daily on days 8–14, followed by 160 mg PO daily on days 15–21³³ Subsequent cycles: Regorafenib 160 mg PO daily on days 1–21 Repeat every 28 days Regorafenib Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. Continued References ^e An FDA-approved biosimilar is an appropriate substitute for bevacizumab. ee Bevacizumab may be safely given at a rate of 0.5 mg/kg/min (5 mg/kg over 10 minutes and 7.5 mg/kg over 15 minutes). ff The majority of safety and efficacy data for this regimen have been developed in Europe, where a capecitabine starting dose of 1000 mg/m² twice daily for 14 days, repeated every 21 days, is standard. Evidence suggests that North American patients may experience greater toxicity with capecitabine (as well as with other fluoropyrimidines) than European patients, and may require a lower dose of capecitabine. # Comprehensive Cancer Colon Cancer NCCN Guidelines Index Table of Contents Discussion #### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE - CHEMOTHERAPY REGIMENS Trifluridine + tipiracil ± bevacizumab^{e,34,35} Trifluridine + tipiracil 35 mg/m² up to a maximum dose of 80 mg per dose (based on the trifluridine component) PO twice daily days 1–5 and 8–12 Bevacizumab 5 mg/kg on days 1 and 15 Repeat every 28 days Pembrolizumab³⁶ (dMMR/MSI-H only) Pembrolizumab 2 mg/kg IV every 3 weeks or Pembrolizumab 200 mg IV every 3 weeks or Pembrolizumab 400 mg IV every 6 weeks Nivolumab³⁷ (dMMR/MSI-H only) Nivolumab 3 mg/kg every 2 weeks or Nivolumab 240 mg IV every 2 weeks or Nivolumab 480 mg IV every 4 weeks Nivolumab + ipilimumab³⁸ (dMMR/MSI-H only) Nivolumab 3 mg/kg (30-minute IV infusion) and ipilimumab 1 mg/kg (30-minute IV infusion) once every 3 weeks for four doses, followed by Nivolumab 3 mg/kg IV or nivolumab 240 mg IV every 2 weeks or Nivolumab 480 mg IV every 4 weeks Dostarlimab-gxly³⁹ (dMMR/MSI-H only) Dostarlimab-gxly 500 mg IV every 3 weeks for 4 doses followed by 1000 mg IV every 6 weeks Trastuzumab⁹⁹ + pertuzumab⁴⁰ (HER2-amplified and *RAS* and *BRAF* WT) Trastuzumab 8 mg/kg IV loading dose on day 1 of cycle 1, followed by 6 mg/kg IV every 21 days Pertuzumab 840 mg IV loading dose on day 1 of cycle 1, followed by 420 mg IV every 21 days Trastuzumab^{gg} + lapatinib⁴¹ (HER2-amplified and *RAS* and BRAF WT) Trastuzumab 4 mg/kg IV loading dose on day 1 of cycle 1, followed by 2 mg/kg IV weekly Lapatinib 1000 mg PO daily Trastuzumab⁹⁹ + tucatinib⁴² (HER2-amplified and *RAS* and BRAF WT), Trastuzumab 8 mg/kg IV loading dose on day 1 of cycle 1, followed by 6 mg/kg IV every 21 days Tucatinib 300mg PO twice daily Fam-trastuzumab deruxtecan-nxki⁴³ Fam-trastuzumab deruxtecan-nxki 6.4 mg/kg IV on day 1 Repeat every 21 days Encorafenib + cetuximab 44-46 (BRAF V600E mutation positive) Encorafenib 300 mg PO daily Cetuximab 400 mg/m² IV followed by 250 mg/m² IV weekly or Cetuximab 500 mg/m² IV every 2 weeks Encorafenib + panitumumab⁴⁴⁻⁴⁶ (*BRAF* V600E mutation positive) Encorafenib 300 mg PO daily Panitumumab 6 mg/kg IV every 14 days Larotrectinib⁴⁷ (*NTRK* gene fusion-positive) 100 mg PO twice daily Entrectinib⁴⁸ (*NTRK* gene
fusion-positive) 600 mg PO once daily Selpercatinib⁴⁹ (*RET* gene fusion-positive) Patients ≥50 kg: 160 mg PO twice daily Patients <50 kg: 120 mg PO twice daily Adagrasib + cetuximab⁵⁰ (*KRAS* G12C mutation positive) Adagrasib 600mg PO BID Cetuximab 500mg/m² IV Q2W Adagrasib + panitumumab (KRAS G12C mutation positive) Adagrasib 600mg PO BID Panitumumab 6mg/kg IV Q2W Sotorasib + cetuximab (*KRAS* G12C mutation positive) Sotorasib 960 mg PO daily Cetuximab 500mg/m² IV Q2W Sotorasib + panitumumab⁵¹ (*KRAS* G12C mutation positive) Sotorasib 960 mg PO daily Panitumumab 6mg/kg IV Q2W ^eAn FDA-approved biosimilar is an appropriate substitute for bevacizumab. ⁹⁹ An FDA-approved biosimilar is an appropriate substitute for trastuzumab. Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. References COL-D 12 OF 14 NCCN Guidelines Index Table of Contents Discussion #### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE - REFERENCES - ¹ deGramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced rectal cancer. J Clin Oncol 2000;18:2938-2947. - ² Cheeseman SL, Joel SP, Chester JD, et al. A 'modified de Gramont' regimen of fluorouracil, alone and with oxaliplatin, for advanced colorectal cancer. Br J Cancer 2002;87:393-399. - ³ Maindrault-Goebel F, deGramont A, Louvet C, et al. Evaluation of oxaliplatin dose intensity in bimonthly leucovorin and 48-hour 5-fluorouracil continuous infusion regimens (FOLFOX) in pretreated metastatic colorectal cancer. Ann Oncol 2000:11:1477-1483. - ⁴ Hochster HS, Grothey A, Hart L, et al. Improved time to treatment failure with an intermittent oxaliplatin strategy: results of CONcePT. Ann Oncol 2014;25:1172-1178. - ⁵ Emmanouilides C, Sfakiotaki G, Androulakis N, et al. Front-line bevacizumab in combination with oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX) in patients with metastatic colorectal cancer: a multicenter phase II study. BMC Cancer 2007;7:91. - ⁶ Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010;28:4697-4705. - ⁷ Venook AP, Niedzwiecki D, Lenz HJ, et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wildtype advanced or metastatic colorectal cancer: A randomized clinical trial. JAMA 2017:317:2392-2401. - ⁸ Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatinbased chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008;26:2013-2019. - ⁹ Andre T, Louvet C, Maindrault-Goebel F, et al. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. Eur J Cancer 1999;35:1343-1347. - ¹⁰ Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol 2007;25:4779-4786. - Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomized, open-label, phase 3 trial. Lancet Oncol 2014;15:1065-1075. - ¹² Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351:337-345. - ¹³ Martín-Martorell P, Roselló S, Rodríguez-Braun E, et al. Biweekly cetuximab and irinotecan in advanced colorectal cancer patients progressing after at least one previous line of chemotherapy: results of a phase II single institution trial. Br J Cancer 2008:99:455-458. - ¹⁴ Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 2010;28:4706-4713. - ¹⁵ Van Cutsem E, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012;30:3499-3506. - ¹⁶ Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomized, double-blind, multicentre, phase 3 study. Lancet Oncol 2015;16:499-508. - ¹⁷ Conroy T, Bosset J-F, Etienne P-L, et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial. The Lancet Oncology 2021;22:702-715. - ¹⁸ Bennouna J, Andre T, Campion L, et al. Rationale and design of the IROCAS study: multicenter, international, randomized phase 3 trial comparing adjuvant modified (m) FOLFIRINOX to mFOLFOX6 in patients with high-risk stage III (pT4 and/or N2) colon cancer-A UNICANCER GI-PRODIGE Trial. Clin Colorectal Cancer. 2019;18:e69-e73. - 19 Ychou M, Rivoire M, Thezenas S, et al. A randomized phase II trial of three intensified chemotherapy regimens in first-line treatment of colorectal cancer patients with initially unresectable or not optimally resectable liver metastases. The METHEP Trial. Ann Surg Oncol 2013: 20:4289-4297. - ²⁰ Cremolini C, Loupakis F, Antoniotti C, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol 2015;16:1306-1315. - ²¹ Haller DG, Rothenberg ML, Wong AO, et al. Oxaliplatin plus irinotecan compared with irinotecan alone as second-line treatment after single agent fluoropyrimidine therapy for metastatic colorectal carcinoma. J Clin Oncol 2008;26:4544-4550. - Wolmark N, Rockette H, Fisher B, et al. The benefit of leucovorin-modulated fluorouracil as postoperative adjuvant therapy for primary colon cancer: results from National Surgical Adjuvant Breast and Bowel Protocol C-03. J Clin Oncol 1993;11:1879-1887. **Continued** Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. NCCN Guidelines Index Table of Contents Discussion ### SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE - REFERENCES - ²³ Jäger E, Heike M, Bernhard H, et al. Weekly high-dose leucovorin versus low-dose leucovorin combined with fluorouracil in advanced colorectal cancer: results of a randomized multicenter trial. J Clin Oncol 1996;14:2274-2279. - ²⁴ Van Cutsem E, Twelves C, Cassidy J, et al. Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 2001;19:4097-4106. - ²⁵ Cunningham D, Lang I, Marcuello E, et al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised phase 3 trial. Lancet Oncol 2013;14:1077-1085. - ²⁶ Cunningham D, Pyrhonen S, James R, et al. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. The Lancet 1998;352:1413-1418. - ²⁷ Fuchs CS, Moore MR, Harker G, et al. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol 2003;21:807-814. - ²⁸ Van Cutsem E, Tejpar S, Vanbeckevoort D, et al. Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: The Randomized EVEREST Study. J Clin Oncol 2012;30:2861-2868. - Andre T, Blons H, Mabro M, et al. Panitumumab combined with irinotecan for patients with KRAS wild-type metastatic colorectal cancer refractory to standard chemotherapy: a GERCOR efficacy, tolerance, and translational molecular study. Ann Oncol 2013;24:412-419. - 30 Yildiz R, Buyukberber S, Uner A, et al. Bevacizumab plus irinotecan-based therapy in metastatic colorectal cancer patients previously treated with oxaliplatin-based regimens. Cancer Invest 2010;28:33-37. - 31 Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapyrefractory metastatic colorectal cancer. J Clin Oncol 2007;25:1658-1664. - ³² Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebocontrolled, phase 3 trial. Lancet 2013;381:303-312. - ³³ Bekaii-Saab TS, Ou F-S, Ahn DH, et al. Regorafenib-dose optimisation in patients with refractory metastatic colorectal cancer (reDOS): a randomised, multicentre, open-label, phase 2 study. Lancet Oncol 2019;20:1070-1082. - ³⁴ Mayer RJ, Van Cutsem E, Falcone A, et al. Randomized Trial of TAS-102 for Refractory Metastatic Colorectal Cancer (RECOURSE). N Engl J Med 2015;372:1909-1919. - ³⁵ Pfeiffer PP, Yilmaz M, Moller
S, et al. TAS-102 with or without bevacizumab in patients with chemorefractory metastatic colorectal cancer: an investigator-initiated, open-label, randomised, phase 2 trial. Lancet Oncol 2020;21:412-420. - ³⁶ Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520. - ³⁷ Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair deficient/microsatellite instability-high colorectal cancer (CheckMate 142): results of an open-label, multicentre, phase 2 study. Lancet Oncol 2017;18:1182-1191. - ³⁸ Overman MJ, Lonardi S, Wong K et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair–deficient/microsatellite instability–high metastatic colorectal cancer. J Clin Oncol 2018;36:773-779. - ³⁹ Berton D, Banerjee SN, Curigliano G, et al. Antitumor activity of dostarlimab in patients with mismatch repair-deficient/microsatellite instability–high tumors: A combined analysis of two cohorts in the GARNET study. J Clin Oncol 2021;39:15 suppl, 2564-2564. ⁴⁰ Meric-Bernstam F, Hurwitz H, Raghav KPS, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2019;20:518-530. - 41 Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17:738-746. - 42 Strickler JH, Cercek A, Siena S, et al. Additional analyses of MOUNTAINEER: A phase II study of tucatinib and trastuzumab for HER2-positive mCRC [abstract]. Ann Oncol 2022;33:S808-S869. - ⁴³ Siena S, Di Bartolomeo M, Raghav K, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol 2021;22:779-789. - ⁴⁴ Van Cutsem E, Huijberts S, Grothey A, et al. Binimetinib, encorafenib, and cetuximab triplet therapy for patients with *BRAF* V600E-mutant metastatic colorectal cancer: Safety lead-in results from the phase III BEACON Colorectal Cancer Study. J Clin Oncol 2019;37:1460-1469. - ⁴⁵ Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, Binimetinib, and Cetuximab in *BRAF* V600E-Mutated Colorectal Cancer. N Engl J Med. 2019;381:1632-1643. - ⁴⁶ Kopetz S, Grothey A, Van Cutsem E, et al. Quality of life with encorafenib plus cetuximab with or without binimetinib treatment in patients with BRAF V600E-mutant metastatic colorectal cancer: patient-reported outcomes from BEACON CRC. ESMO Open 2022;7:100477. - ⁴⁷ Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378:731-739. - ⁴⁸ Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020;21:271-282. - 49 Subbiah V, Wolf J, Konda B, et al. Tumour agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid: a global, phase 1/2, multicentre, open-label trial (LIBRETTO-001). Lancet Oncol 2022;23:1261-1273. - 50 Yaeger R, Weiss J, Pelster M, et al. Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated KRAS G12C. N Engl J Med 2023;388:44-54. - 51 Kuboki Y, Yaeger R, Fakih MG, et al. Sotorasib in combination with panitumumab in refractory KRAS G12C-mutated colorectal cancer: Safety and efficacy for phase lb full expansion cohort. Ann Oncol 2022;33:S136-S196. Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF RADIATION AND CHEMORADIATION THERAPY ### **General Principles** - Neoadjuvant RT with concurrent fluoropyrimidine-based chemotherapy may be considered for initially unresectable or medically inoperable non-metastatic T4 colon cancer to aid resectability. - ▶ Infusional 5-FU + RT¹ - 5-FU 225 mg/m² IV over 24 hours 5 or 7 days/week during RT - ► Capecitabine + RT^{2,3} - Capecitabine 825 mg/m² PO twice daily 5 days/week during RT - ▶ Bolus 5-FU/leucovorin + RT^{1,a} - 5-FU 400 mg/m² IV bolus + leucovorin 20 mg/m² IV bolus for 4 days during weeks 1 and 5 of RT - In patients with a limited number of liver or lung metastases, ablative radiotherapy to the metastatic site can be considered in highly selected cases or in the setting of a clinical trial. Radiotherapy should not be used in the place of surgical resection. Radiotherapy should be delivered in a highly conformal manner. The techniques can include 3-D conformal RT, intensity-modulated RT (IMRT), or stereotactic body RT (SBRT). #### **Treatment Information** - IMRT is preferred for unique clinical situations such as reirradiation of previously treated patients with recurrent disease or unique anatomical situations where IMRT facilitates the delivery of recommended target volume doses while respecting accepted normal tissue dose-volume constraints. - Consider SBRT for patients with oligometastatic disease. - Image-guided RT (IGRT) with kilovoltage (kV) imaging or cone-beam CT imaging should be routinely used during the course of treatment with IMRT and SBRT. - Arterially directed catheter therapy, and in particular yttrium-90 microsphere-selective internal radiation, is an option in highly selected patients with chemotherapy-resistant/-refractory disease and with predominant hepatic metastases. - IORT, if available, may be considered for patients with T4 or recurrent cancers as an additional boost. - Target Volumes - RT fields should include the tumor bed, which should be defined by preoperative radiologic imaging and/or surgical clips. - ▶ Radiation doses should be: 45–50 Gy in 25–28 fractions. - ♦ Consider boost for close or positive margins or unresectable cases after evaluating the cumulative dose to adjacent organs at risk. - ♦ Small bowel dose should be limited to 50 Gy. - ♦ Appropriate organs at risk should be evaluated on the dose-volume histogram (DVH). - ♦ Fluoropyrimidine-based chemotherapy should be delivered concurrently with radiation. - Consider radiation treatment for T4 with penetration to a fixed structure after surgery. ^a Bolus 5-FU/leucovorin/RT is an option for patients not able to tolerate capecitabine or infusional 5-FU. **Continued** Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF RADIATION AND CHEMORADIATION THERAPY #### **Supportive Care** - Patients should be considered for vaginal dilators and instructed on the symptoms of vaginal stenosis, if applicable. - Patients of childbearing potential should be counseled about the effects of premature menopause and consideration should be given to referral for discussion of hormone replacement strategies. - Patients of childbearing potential should be counseled that an irradiated uterus cannot carry a fetus to term. - Patients should be counseled on sexual dysfunction, potential for future low testosterone levels, and infertility risks and given information regarding sperm banking or oocyte, egg, or ovarian tissue banking, as appropriate, prior to treatment. Note: All recommendations are category 2A unless otherwise indicated. ¹Martenson JA Jr, Willett CG, Sargent DJ, et al. Phase III study of adjuvant chemotherapy and radiation therapy compared with chemotherapy alone in the surgical adjuvant treatment of colon cancer: results of intergroup protocol 0130. J Clin Oncol 2004;15:3277-3283. ² O'Connell MJ, Colangelo LH, Beart RW, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J Clin Oncol 2014;32:1927-1934. ³ Hofheinz R, Wenz FK, Post S, et al. Chemoradiotherapy with capecitabine versus fluorouracil for locally advanced rectal cancer: A randomized, multicentre, non-inferiority, phase 3 trial. Lancet Oncol 2012;13:579-588. NCCN Guidelines Index Table of Contents Discussion ### PRINCIPLES OF RISK ASSESSMENT FOR STAGE II DISEASE^{1,2,3} - Patient/physician discussion should take place regarding the potential risks of therapy compared to potential benefits, including prognosis. This should include discussion of evidence supporting treatment, assumptions of benefit from indirect evidence, morbidity associated with treatment, high-risk characteristics, and patient preferences. - When determining if adjuvant therapy should be administered, the following should be taken into consideration: - ▶ Number of lymph nodes analyzed after surgery (<12) - ▶ Poor prognostic features (eg, poorly differentiated histology [exclusive of those that are MSI-H]; lymphatic/vascular invasion; bowel obstruction; PNI; localized perforation; close, indeterminate, positive margins; or high tumor budding) - ▶ Assessment of other comorbidities and anticipated life expectancy. - The benefit of adjuvant chemotherapy does not improve survival by more than 5%. - MSI or MMR testing (<u>COL-B 4 of 8</u>) Note: All recommendations are category 2A unless otherwise indicated. ¹Benson III AB, Schrag D, Somerfield MR, et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol 2004;16:3408-3419. ² Figueredo A, Charette ML, Maroun J, et al. Adjuvant therapy for stage II colon cancer: a systematic review from the cancer care ontario program in evidence-based care's gastrointestinal cancer disease site group. J Clin Oncol 2004;16:3395-3407. ³Gill S, Loprinzi CL, Sargent DJ, et al. Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much?
J Clin Oncol 2004;22:1797-1806. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF ADJUVANT THERAPY - CAPEOX or FOLFOX is superior to 5-FU/leucovorin for patients with stage III colon cancer. 1,2 - Capecitabine appears to be equivalent to bolus 5-FU/leucovorin in patients with stage III colon cancer.³ - A survival benefit has not been demonstrated for the addition of oxaliplatin to 5-FU/leucovorin in stage II colon cancer. FOLFOX is reasonable for patients with stage II colon cancer with multiple high-risk factors and is not indicated for good- or average-risk patients with stage II colon cancer. - A benefit for the addition of oxaliplatin to 5-FU/leucovorin in patients aged ≥70 years has not been proven.⁴ - While non-inferiority of 3 versus 6 months of CAPEOX has not been proven, 3 months of CAPEOX numerically appeared similar to 6 months of CAPEOX for 5-year overall survival (82.1% vs. 81.2%; HR, 0.96), with considerably less toxicity. These results support the use of 3 months of adjuvant CAPEOX over 6 months of adjuvant CAPEOX in the vast majority of patients with stage III colon cancer. In patients with colon cancer, staged as T1–3, N1 (low-risk stage III), 3 months of CAPEOX is non-inferior to 6 months of CAPEOX for DFS; non-inferiority of 3 versus 6 months of FOLFOX has not been proven. In patients with colon cancer staged as T4, N1–2 or T any, N2 (high-risk stage III), 3 months of FOLFOX is inferior to 6 months of FOLFOX for DFS, whereas non-inferiority of 3 versus 6 months of CAPEOX has not been proven. Grade 3+ neurotoxicity rates are lower for patients who receive 3 versus 6 months of treatment (3% vs. 16% for FOLFOX; 3% vs. 9% for CAPEOX). - A pooled analysis of high-risk stage II patients in the IDEA collaboration did not show non-inferiority of 3 months compared to 6 months of adjuvant treatment. Similar to stage III, the duration of therapy was associated with a small (and not statistically significant) difference in DFS between 3 and 6 months of CAPEOX. There were significantly less grade 3–5 toxicities with 3 versus 6 months.⁷ <u>Principles of Adjuvant Therapy - Chemotherapy</u> <u>Regimens and References on COL-G (2 of 2)</u> Note: All recommendations are category 2A unless otherwise indicated. ¹Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004;350:2343-2351. ²Andre T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trail. J Clin Oncol 2009;27:3109-3116. ³Twelves C, Wong A, Nowacki MP, et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 2005;352:2696-2704. ⁴ Tournigand C, Andre T, Bonnetain F, et al. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the Multicenter International Study of Oxaliplatin, Fluorouracil, and Leucovorin in the Adjuvant Treatment of Colon Cancer trial. J Clin Oncol 2012;30:3353-3360. ⁵ André T, Meyerhardt J, Iveson T, et al. Effect of duration of adjuvant chemotherapy for patients with stage III colon cancer (IDEA collaboration): final results from a prospective, pooled analysis of six randomised, phase 3 trials. Lancet Oncol 2020;21:1620-1629. ⁶ Grothey A, Sobrero AF, Shields AF, et al. Duration of adjuvant chemotherapy for stage III colon cancer. N Engl J Med 2018;378:1177-1188. ⁷ Iveson T, Sobrero AF, Yoshino T, et al. Prospective pooled analysis of four randomized trials investigating duration of adjuvant (adj) oxaliplatin-based therapy (3 vs 6 months {m} for patients (pts) with high-risk stage II colorectal cancer (CC) [abstract]. J Clin Oncol 2019;37:3501-3501. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF ADJUVANT THERAPY - CHEMOTHERAPY REGIMENS AND REFERENCES #### mFOLFOX 6 Oxaliplatin 85 mg/m² IV, day 1^a Leucovorin 400 mg/m² IV, day 1^b 5-FU 400 mg/m² IV bolus on day 1, followed by 1200 mg/m²/day x 2 days (total 2400 mg/m² over 46–48 hours) continuous infusion. Repeat every 2 weeks.^{1,2,3} ### Capecitabine⁴ Capecitabine 1000–1250^c mg/m² PO twice daily for 14 days every 3 weeks x 24 weeks. ### CAPEOX⁵ Oxaliplatin 130 mg/m² IV^a day 1 Capecitabine 1000^c mg/m² PO twice daily for 14 days every 3 weeks x 24 weeks. #### 5-FU/leucovorin - Leucovorin 500 mg/m² given as a 2-hour infusion and repeated weekly x 6. 5-FU 500 mg/m² given bolus 1 hour after the start of leucovorin and repeated 6 x weekly. Every 8 weeks for 4 cycles.⁶ - Simplified biweekly infusional 5-FU/leucovorin (sLV5FU2)⁷ Leucovorin 400^b mg/m² IV day 1, followed by 5-FU bolus 400 mg/m², followed by 1200 mg/m²/day x 2 days (total 2400 mg/m² over 46–48 hours) continuous infusion. Repeat every 2 weeks. #### Footnotes - ^aOxaliplatin may be given either over 2 hours, or may be infused over a shorter time at a rate of 1 mg/m²/min. Leucovorin infusion should match infusion time of oxaliplatin. Cercek A, Park V, Yaeger R, et al. Faster FOLFOX: oxaliplatin can be safely infused at a rate of 1 mg/m²/min. J Oncol Pract 2016;12:e548-553. - b Leucovorin 400 mg/m² is the equivalent of levoleucovorin 200 mg/m². - ^c The majority of safety and efficacy data for this regimen have been developed in Europe, where a capecitabine starting dose of 1000 mg/m² twice daily for 14 days, repeated every 21 days, is standard. Evidence suggests that North American patients may experience greater toxicity with capecitabine (as well as with other fluoropyrimidines) than European patients, and may require a lower dose of capecitabine. #### References - ¹Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004;350:2343-2351. - ²Cheeseman SL, Joel SP, Chester JD, et al. A 'modified de Gramont' regimen of fluorouracil, alone and with oxaliplatin, for advanced colorectal cancer. Br J Cancer 2002;87:393-399. - ³ Maindrault-Goebel F, deGramont A, Louvet C, et al. Evaluation of oxaliplatin dose intensity in bimonthly leucovorin and 48-hour 5-fluorouracil continuous infusion regimens (FOLFOX) in pretreated metastatic colorectal cancer. Ann Oncol 2000;11:1477-1483. - ⁴Twelves C, Wong A, Nowacki MP, et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 2005;352:2696-2704. - ⁵Schmoll HJ, Cartwright T, Tabernero J, et al. Phase III trial of capecitabine plus oxaliplatin as adjuvant therapy for stage III colon cancer: a planned safety analysis in 1,864 patients. J Clin Oncol 2007;25:102-109. Haller DG, Tabernero J, Maroun J, et al. Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J Clin Oncol 2011;29:1465-1471. - ⁶ Haller DG, Catalano PJ, Macdonald JS Mayer RJ. Phase III study of fluorouracil, leucovorin and levamisole in high risk stage II and III colon cancer: final report of Intergroup 0089. J Clin Oncol 2005:23:8671-8678. - ⁷Andre T, Louvet C, Maindrault-Goebel F, et al. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. Eur J Cancer 1999;35:1343-1347. Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion ### PRINCIPLES OF SURVIVORSHIP - Colorectal Long-term Follow-up Care #### **Colorectal Cancer Surveillance** - Surveillance recommendations on <u>COL-8</u> - Long-term surveillance should be carefully managed with routine good medical care and monitoring, including cancer screening, routine health care, and preventive care. - Routine CEA monitoring and routine CT scanning are not recommended beyond 5 years. #### **Survivorship Care Planning** The oncologist and primary care provider should have defined roles in the surveillance period, with roles communicated to patient.¹ - Develop survivorship care plan that includes: - ▶ Overall summary of treatment, including all surgeries, radiation treatments, and chemotherapy received. - ▶ Description of possible expected time to resolution of acute toxicities, long-term effects of treatment, and possible late sequelae of treatment. - ▶ Surveillance recommendations. - Delineate appropriate timing of transfer of care with specific responsibilities identified for primary care physician and oncologist. - ▶ Health behavior recommendations. - **▶** Fertility counseling ### Management of Late/Long-term Sequelae of Disease or Treatment²⁻⁶ - For issues related to distress, pain, neuropathy, fatigue, or sexual dysfunction, see NCCN Guidelines for Survivorship. - For chronic diarrhea or incontinence - ▶ Consider anti-diarrheal agents, bulk-forming agents, diet manipulation, pelvic floor rehabilitation, and protective undergarments. - Management of an ostomy - ▶ Consider participation in an ostomy support group or coordination of care with a health care provider specializing in ostomy care (ie, ostomy nurse) - Screen for distress around body changes (NCCN Guidelines for Distress Management) and precautions around involvement with physical activity (see page SPA-C in the NCCN Guidelines for Survivorship). - For oxaliplatin-induced neuropathy - ▶ Consider duloxetine for painful neuropathy only, not effective for numbness, tingling, or cold sensitivity.⁷ - ▶ Consider non-pharmacologic therapies such as heat or acupuncture. - ▶ Pregabalin or gabapentin are not recommended. # Counseling Regarding Healthy Lifestyle and Wellness⁸ NCCN Guidelines for Survivorship - Undergo all age- and gender-appropriate cancer and preventive health screenings as per national guidelines. - Maintain a healthy body weight throughout life.
- Adopt a physically active lifestyle (at least 30 minutes of moderate-intensity activity on most days of the week). Activity recommendations may require modification based on treatment sequelae (ie, ostomy, neuropathy). - Consume a healthy diet with emphasis on plant sources. Diet recommendations may be modified based on severity of bowel dysfunction. - Consider daily aspirin 325 mg for secondary prevention. - Drink alcohol sparingly, if at all. - Receive smoking cessation counseling as appropriate. Additional health monitoring and immunizations should be performed as indicated under the care of a primary care physician. Survivors are encouraged to maintain a therapeutic relationship with a primary care physician throughout their lifetime. References Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF SURVIVORSHIP - References - ¹Hewitt M, Greenfield S, Stovall E. From Cancer Patient to Cancer Survivor: Lost in Transition. Washington, D.C.:The National Academies Press; 2006. - ²Schneider EC, Malin JL, Kahn KL, et al. Surviving colorectal cancer. Cancer 2007;110:2075-2082. - ³Sprangers MAG, Taal BG, Aaronson NK, et al. Quality of life in colorectal cancer: stoma vs. nonstoma patients. Dis Colon Rectum 1995;38:361-369. - ⁴Gami B, Harrington K, Blake P, et al. How patients manage gastrointestinal symptoms after pelvic radiotherapy. Aliment Pharmacol Ther 2003;18:987-994. - ⁵DeSnoo L, Faithfull S. A qualitative study of anterior resection syndrome: the experiences of cancer survivors who have undergone resection surgery. Eur J Cancer 2006;15:244-251. - ⁶McGough C, Baldwin C, Frost C, Andreyev HJN. Role of nutritional intervention in patients treated with radiotherapy for pelvic malignancy. Br J Cancer 2004;90:2278-2287. - ⁷Lavoie Smith EM, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy. JAMA 2013;309:1359-1367. - ⁸Kushi LH, Byers T, Doyle C, et al and The American Cancer Society 2006 Nutrition and Physical Activity Guidelines Advisory Committee. American Cancer Society Guidelines on Nutrition and Physical Activity for Cancer Prevention: Reducing the Risk of Cancer With Healthy Food Choices and Physical Activity CA Cancer J Clin 2006;56:254-281. Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF APPENDICEAL ADENOCARCINOMA ### Pathologic and Molecular Classification - Careful pathologic definition is key¹ - Infiltrative invasion is the hallmark of appendiceal adenocarcinoma (AA) and is distinct from the pushing invasion of low-grade appendiceal mucinous neoplasms (LAMN) and high-grade appendiceal mucinous neoplasms (HAMN). HAMN is a very rare diagnosis and should be labeled only by expert pathologic review as the clinical behavior is more similar to LAMN, but may be misclassified as adenocarcinoma. - ▶ AA is more aggressive than neuroendocrine tumors (NET) and mixed NET-adenocarcinoma. - Mucinous (including goblet cell, a mixed adenocarcinoma-neuroendocrine (MANEC) histology) and non-mucinous adenocarcinomas are seen, which can be further classified as well-, moderate-, and poorly differentiated. - ▶ Non-mucinous AA behaves similarly to colon adenocarcinoma. - ▶ Signet ring mucinous adenocarcinoma is associated with a very poor prognosis. - Discordance in histology may be seen between the appendiceal primary and peritoneal metastases. Survival is most closely associated with the peritoneal pathologic grade.² - The molecular workup should mirror colorectal cancer. KRAS mutations are common, especially in non-mucinous adenocarcinoma. MSI is rare. 3,4 #### **Clinical Presentation** - AA may present incidentally and be diagnosed after an episode of acute appendicitis. - ▶ Patients whose appendicitis is managed nonoperatively should be followed closely to avoid a missed diagnosis of an occult malignancy. ^{5,6} - ▶ Recommend repeat CT scan within 6 months of the episode of appendicitis to ensure resolution of imaging findings. - Initial presentation may be confused with primary right-sided colon or ovarian/gynecologic cancer. - A screening colonoscopy should be considered in all patients diagnosed with AA. - ▶ A primary lesion may not be visualized by colonoscopy depending on the location of the tumor within the appendix. - A negative colonoscopy in a person with a suggestive history (eg, appendiceal neoplasm, peritoneal carcinomatosis) does not necessarily rule out an appendiceal cancer. - Non-specific abdominal bloating, distention, or post-prandial discomfort may be observed with mucinous peritoneal involvement. - CEA and CA 19-9 should be evaluated and abnormal measurements trended. - ▶ CA-125 could be considered, especially if CEA and CA 19-9 are normal. Systemic Therapy (COL-D) References Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. COL-I 1 of 3 NCCN Guidelines Index Table of Contents Discussion #### PRINCIPLES OF APPENDICEAL ADENOCARCINOMA #### **Localized Disease** - Screening colonoscopy is recommended in all patients diagnosed with AA prior to definitive resection to rule out synchronous large polyps or cancers. - Right hemicolectomy with adequate lymphadenectomy is recommended. - Appendectomy may be sufficient for patients with T1, low-grade disease and absence of lymphovascular invasion.⁸ - The use of adjuvant chemotherapy is largely extrapolated from colon cancer and should be considered for high-risk stage II and stage III cancers.^{9,10} - During surveillance, a second-look diagnostic laparoscopy to evaluate for residual/recurrent disease is not routinely recommended, but may be considered for symptomatic patients in the absence of clear imaging findings, especially in the setting of rising tumor markers. - Surveillance imaging should occur at least annually, and may be done more frequently for patients with acellular mucinous spread at the time of surgery. ### **Metastatic Disease** - Prognosis is best for localized-only disease. Recurrence risk is higher for focal mucin, while widespread acellular mucin has the highest recurrence risk. The pathologic M stage distinguishes between intraperitoneal acellular mucin only (M1a), intraperitoneal mucinous epithelium (M1b), and non-intraperitoneal metastasis (M1c). - Mucinous disease is poorly visualized by PET; MRI may be preferred for suboptimal CT candidates.⁸ - Visceral or more than limited to peritoneal disease - ▶ Treatment should follow metastatic colon cancer guidelines. - ▶ There is no clear evidence for anti-EGFR therapy, even among RAS/RAF wildtype cancers. - ▶ It is reasonable to use other targeted options (MSI-H, BRAF mutation, HER2) in line with colorectal cancer guidelines. #### **Metastatic Disease cont.** - Limited to peritoneal disease - Pseudomyxoma peritonei is an outdated umbrella term that encompasses both low- and high-grade disease and is not recommended. - ▶ Classification of peritoneal disease should be per current guidelines - ♦ Low-Grade Mucinous Carcinoma Peritonei (MCP-L; formerly labeled Diffuse Peritoneal Adenomatosis [DPAM]) - ♦ High-Grade Mucinous Carcinoma Peritonei (MCP-H; formerly labeled Peritoneal Mucinous Carcinoma [PMCA]) - ♦ MCP-H with signet ring cells (MCP-H-S; formerly labeled PMCA-S). - ▶ Patients deemed possible surgical candidates should be evaluated at a high-volume center for candidacy for hyperthermic intraperitoneal chemotherapy (HIPEC). These candidates are suggested to receive chemotherapy up to 6 months, preferably in the neoadjuvant setting. Additional chemotherapy may be considered for patients who are not resectable at initial diagnosis with the possibility of converting to resectable disease.¹¹ - ▶ A peritoneal cancer index (PCI) score and completeness of cytoreduction (CC) score should be reported for cytoreductive surgery. - ▶ If a patient is not a candidate for surgery, treatment should follow metastatic colon cancer guidelines. - ▶ The extent of cytoreduction should be individualized. Surgery is discouraged for high PCI, biliary obstruction, extensive disease at the gastrohepatic ligament/porta hepatis, extensive retroperitoneal disease, intraparenchymal liver lesions requiring a major resection, diffuse small bowel serosa/mesenteric involvement, and/ or multiple sites of small bowel obstruction. Systemic Therapy (COL-D) References Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion # PRINCIPLES OF APPENDICEAL ADENOCARCINOMA REFERENCES - ¹ WHO Classification of Tumours Editorial Board. WHO Classification of Tumours of the Digestive System. 5th ed, vol. 1. Lyon: IARC, 2019. - ² Memon AA, Godbole C, Cecil T, et al. Overall survival is more closely associated with peritoneal than primary appendiceal pathological grade in pseudomyxoma peritonei with discordant pathology. Ann Surg Oncol 2022;29:2607-2613. - ³ Raghav K, Overman MJ. Small bowel adenocarcinomas—existing evidence and evolving paradigms. Nat Rev Clin Oncol 2013;10:534-544. - ⁴ Tokunaga R, Xiu J, Johnston C. et al. Molecular profiling of appendiceal adenocarcinoma and comparison with right-sided and left-sided colorectal cancer. Clin Cancer Res 2019:25:3096-3103. - ⁵ Mallinen J, Rautio T, Gronroos J, et al. Risk of appendiceal neoplasm in periappendicular abscess in patients treated with interval appendectomy vs follow-up with magnetic resonance imaging: 1-year outcomes of the Peri-Appendicitis Acuta Randomized Clinical Trial. JAMA Surg 2019;154:200-207. - ⁶ Peltrini R, Cantoni V, Green R, et al. Risk of appendiceal neoplasm after interval appendectomy for complicated appendicitis: A systematic review
and meta-analysis. Surgeon 2021:19:e549-e558. - ⁷ Nizam W, Fackche N, Pessoa B, et al. Prognostic significance of preoperative tumor markers in pseudomyxoma peritonei from low-grade appendiceal mucinous neoplasm: a study from the US HIPEC Collaborative. J Gastrointest Surg 2022;26:414-424. - ⁸ Straker R, Grinberg S, Sharon C, et al. Pathologic factors associated with low risk of lymph node metastasis in nonmucinous adenocarcinoma of the appendix. Ann Surg Oncol 2022;29:2334-2343. - ⁹ Akce M, Zakka K, Penley M, et al. Impact of high-risk features for stage II adenocarcinoma of the appendix. Cancer Treat Res Commun 2021;27:100329. ¹⁰ Zakka K, Williamson S, Jiang R, et al. Is adjuvant chemotherapy beneficial for stage II-III goblet cell carcinoid/goblet cell adenocarcinoma of the appendix? Surg Oncol 2021;36:120-129. - ¹¹ Govaerts K, Lurvink RJ, De Hingh IHJT, et al. Appendiceal tumours and pseudomyxoma peritonei: Literature review with PSOGI/EURACAN clinical practice guidelines for diagnosis and treatment. Eur J Surg Oncol 2021;47:11-35. Note: All recommendations are category 2A unless otherwise indicated. NCCN Guidelines Index Table of Contents Discussion American Joint Committee on Cancer (AJCC) TNM Staging Classification for Colon Cancer 8th ed., 2017 | | Definitions for T. N. M. | | John Gancer our eu., 2017 | | |---------|--|-----|--|--| | rabie i | Definitions for T, N, M | N | Regional Lymph Nodes | | | Т | Primary Tumor | NX | Regional lymph nodes cannot be assessed | | | TX | Primary tumor cannot be assessed | N0 | No regional lymph node metastasis | | | T0 | No evidence of primary tumor | N1 | One to three regional lymph nodes are positive (tumor in lym nodes measuring ≥0.2 mm), or any number of tumor deposits present and all identifiable lymph nodes are negative | | | Tis | Carcinoma <i>in situ</i> : intramucosal carcinoma (involvement of lamina propria with no extension through muscularis mucosae) | | | | | T1 | Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria) | N1a | One regional lymph node is positive | | | | | N1b | Two or three regional lymph nodes are positive | | | T2 | Tumor invades the muscularis propria | N1c | No regional lymph nodes are positive, but there are tumor | | | Т3 | Tumor invades through the muscularis propria into pericolorectal tissues | | deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues | | | T4 | Tumor invades* the visceral peritoneum or invades or adheres** to adjacent organ or structure | N2 | Four or more regional lymph nodes are positive | | | | | N2a | Four to six regional lymph nodes are positive | | | T4a | Tumor invades* through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum) | N2b | Seven or more regional lymph nodes are positive | | | | | M | Distant Metastasis | | | T4b | Tumor directly invades* or adheres** to adjacent organs or structures | MO | No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists) | | | | | M1 | Metastasis to one or more distant sites or organs or peritoneal metastasis is identified | | | | | | | | - M1a Metastasis to one site or organ is identified without peritoneal metastasis - M1b Metastasis to two or more sites or organs is identified without peritoneal metastasis - M1c Metastasis to the peritoneal surface is identified alone or with other site or organ metastases Used with permission of the American College of Surgeons, Chicago, Illinois. The original source for this information is the AJCC Cancer Staging Manual, Eighth Edition (2017) published by Springer International Publishing. ^{*} Direct invasion in T4 includes invasion of other organs or other segments of the colorectum as a result of direct extension through the serosa, as confirmed on microscopic examination (for example, invasion of the sigmoid colon by a carcinoma of the cecum) or, for cancers in a retroperitoneal or subperitoneal location, direct invasion of other organs or structures by virtue of extension beyond the muscularis propria (i.e., respectively, a tumor on the posterior wall of the descending colon invading the left kidney or lateral abdominal wall; or a mid or distal rectal cancer with invasion of prostate, seminal vesicles, cervix, or vagina). ^{**} Tumor that is adherent to other organs or structures, grossly, is classified cT4b. However, if no tumor is present in the adhesion, microscopically, the classification should be pT1-4a depending on the anatomical depth of wall invasion. The V and L classification should be used to identify the presence or absence of vascular or lymphatic invasion whereas the PN prognostic factor should be used for perineural invasion. American Joint Committee on Cancer (AJCC) TNM Staging System for Colon Cancer 8th ed., 2017 ### Table 2. Prognostic Groups | | Т | N | M | |------------|--------|--------|-----| | Stage 0 | Tis | N0 | M0 | | Stage I | T1, T2 | N0 | M0 | | Stage IIA | Т3 | N0 | M0 | | Stage IIB | T4a | N0 | M0 | | Stage IIC | T4b | N0 | M0 | | Stage IIIA | T1-T2 | N1/N1c | M0 | | | T1 | N2a | M0 | | Stage IIIB | T3-T4a | N1/N1c | M0 | | | T2-T3 | N2a | M0 | | | T1-T2 | N2b | M0 | | Stage IIIC | T4a | N2a | M0 | | | T3-T4a | N2b | M0 | | | T4b | N1-N2 | M0 | | Stage IVA | Any T | Any N | M1a | | Stage IVB | Any T | Any N | M1b | | Stage IVC | Any T | Any N | M1c | #### **ABBREVIATIONS** 5-FU 5-fluorouracil AA appendiceal adenocarcinoma CBC complete blood count **CEA** carcinoembryonic antigen ctDNA circulating tumor DNA DFS disease-free survival dMMR deficient mismatch repair EBRT external beam radiation therapy FAP familial adenomatous polyposis FISH fluorescence in situ hybridization GBCA gadolinium-based contrast agent H&E hematoxylin and eosin HAMN high-grade appendiceal mucinous neoplasms HR hazard ratio IHC immunohistochemistry IMRT intensity-modulated radiation therapy IORT intraoperative radiation therapy LAMN low-grade appendiceal mucinous neoplasms LS Lynch syndrome MMR mismatch repair MSI microsatellite instability MSI-H microsatellite instability-high MSS microsatellite stable **NET** neuroendocrine tumor NGS next-generation sequencing PCI peritoneal cancer index pMMR proficient mismatch repair PNI perineural invasion RT radiation therapy SBRT stereotactic body radiation therapy # Comprehensive NCCN Guidelines Version 3.2023 **Colon Cancer** | NCCN Categories of Evidence and Consensus | | | | |---|--|--|--| | Category 1 | Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate. | | | | Category 2A | Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate. | | | | Category 2B | Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate. | | | | Category 3 | Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate. | | | All recommendations are category 2A unless otherwise indicated. | NCCN Categories of Preference | | | | | |---------------------------------|---|--|--|--| | Preferred intervention | Interventions that are based on superior efficacy, safety, and evidence; and, when appropriate, affordability. | | | | | Other recommended intervention | Other interventions that may be somewhat less efficacious, more toxic, or based on less mature data; or significantly less affordable for similar outcomes. | | | | | Useful in certain circumstances | Other interventions that may be used for selected patient populations (defined with recommendation). | | | | All recommendations are considered appropriate. | Discussion | This discussion corresponds to the NCCN Guidelines for Colon Cancer. Last updated September 21, 2023. | Surgical Management of Colorectal Metastases | |--|---|--| | Table of Content | s | | | Overview | MS-2 | Peritoneal CarcinomatosisMS-33 | | Guidelines Update | MethodologyMS-2 | Determining Resectability MS-35 | | • | riteriaMS-2 | Neoadjuvant Therapy and Conversion to ResectabilityMS-35 | | | Language UsageMS-3 | Perioperative Therapy for Resectable Metachronous Metastatic Disease | | Risk Assessment | MS-3 | Systemic Therapy for Advanced or Metastatic Disease MS-40 | | Lynch Syndrome | MS-3 | Workup and Management of Synchronous Metastatic Disease MS-73 | | The Role of Vitamin D in CRC | | Workup and Management of Metachronous Metastatic Disease. MS-76 | | | | Endpoints for Advanced CRC Clinical TrialsMS-77 | | Staging | MS-6 | Post-treatment SurveillanceMS-77 | | Pathology | MS-6 | Surveillance for Locoregional DiseaseMS-77 | | Appendiceal Neopla | asmsMS-9 | Surveillance for Metastatic Disease | | Clinical Presentation | on and Treatment of Nonmetastatic Disease | Managing an Increasing CEA LevelMS-80 | |
Workup and Management of the Malignant PolypMS-13 Workup and Management of Invasive Nonmetastatic Colon CancerMS-14 Adjuvant Chemotherapy for Resectable Colon CancerMS-17 | | SurvivorshipMS-81 | | | | Healthy Lifestyles for Survivors of CRCMS-81 | | | | Secondary Chemoprevention for CRC SurvivorsMS-83 | | | | SummaryMS-83 | | Perioperative Cher | moradiationMS-27 | References MS-85 | | | | | Management of Metastatic DiseaseMS-28 #### Overview Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer and the second leading cause of cancer death in the United States. In 2023, an estimated 106,970 new cases of colon cancer and 46,050 cases of rectal cancer will occur. During the same year, an estimated 52,550 people will die of colon and rectal cancer combined.¹ Despite these high numbers, the incidence of colon and rectal cancers per 100,000 people decreased from 60.5 in 1976 to 46.4 in 2005 and, more recently, 38.7 in 2016.²,³ In addition, mortality from CRC has been decreasing for decades (since 1947 in females and since 1980 in males) and is currently down by more than 50% from peak mortality rates.¹,³ These improvements in incidence of and mortality from CRC are thought to be a result of cancer prevention and earlier diagnosis through screening and better treatment modalities. Recent data show continued rapid declines in incidence among those aged ≥65 years, with a decrease of 3.3% annually between 2011 and 2016.³ Conversely, incidence has increased among those <65 years, with a 1% annual increase in those aged 50 to 64 years and 2% annual increase in those <50 years. CRC death rates also showed age-dependent trends, declining by 3% annually for those ≥65 years, compared to a 0.6% annual decline for individuals aged 50 to 64 years and a 1.3% annual increase for individuals <50 years.³ A retrospective cohort study of the SEER CRC registry also found that the incidence of CRC in patients <50 years has been increasing.⁴ The authors estimate that the incidence rates for colon and rectal cancers will increase by 90.0% and 124.2%, respectively, for patients 20 to 34 years of age by 2030. The cause of this trend is currently unknown. One review suggests that CRC that occurs in patients <45 years may be clinicopathologically and genetically different from CRC in adults ≥45 years, although this has not been confirmed broadly. If cancer in this population is different, there would be a need to develop specific treatment strategies for this population.⁵ This Discussion summarizes the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Colon Cancer. These guidelines begin with the clinical presentation of the patient to the primary care physician or gastroenterologist, and address diagnosis, pathologic staging, surgical management, perioperative treatment, surveillance, management of recurrent and metastatic disease, and survivorship. When reviewing these guidelines, clinicians should be aware of several things. First, these guidelines adhere to the TNM staging system (Table 1 in the algorithm).⁶ Although the guidelines are believed to represent the optimal treatment strategy, the panel believes that, when appropriate, patients should preferentially be included in a clinical trial over standard or accepted therapy. ### **Guidelines Update Methodology** The complete details of the Development and Update of the NCCN Guidelines are available at www.NCCN.org. ### Literature Search Criteria Prior to the update of the NCCN Guidelines® for Colon Cancer, an electronic search of the PubMed database was performed to obtain key literature in the field of CRC published since the previous Guidelines update, using the search terms: "colon cancer, colorectal cancer, rectal cancer." The PubMed database was chosen as it remains the most widely used resource for medical literature and indexes peer-reviewed biomedical literature. The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase III; Clinical Trial, Phase IV; Guideline; Practice Guideline; Randomized Controlled Trial; Meta-Analysis; Systematic Reviews; and Validation Studies. The data from key PubMed articles as well as articles from additional sources deemed as relevant to these Guidelines as discussed by the panel during the Guidelines update have been included in this version of the Discussion section. Recommendations for which high-level evidence is lacking are based on the panel's review of lower-level evidence and expert opinion. ### Sensitive/Inclusive Language Usage NCCN Guidelines strive to use language that advances the goals of equity, inclusion, and representation. NCCN Guidelines endeavor to use language that is person-first; not stigmatizing; anti-racist, anti-classist, antimisogynist, anti-ageist, anti-ableist, and anti-weight-biased; and inclusive of individuals of all sexual orientations and gender identities. NCCN Guidelines incorporate non-gendered language, instead focusing on organ-specific recommendations. This language is both more accurate and more inclusive and can help fully address the needs of individuals of all sexual orientations and gender identities. NCCN Guidelines will continue to use the terms men, women, female, and male when citing statistics, recommendations, or data from organizations or sources that do not use inclusive terms. Most studies do not report how sex and gender data are collected and use these terms interchangeably or inconsistently. If sources do not differentiate gender from sex assigned at birth or organs present, the information is presumed to predominantly represent cisgender individuals. NCCN encourages researchers to collect more specific data in future studies and organizations to use more inclusive and accurate language in their future analyses. ### Risk Assessment Approximately 20% of cases of colon cancer are associated with familial clustering, and first-degree relatives of patients with colorectal adenomas or invasive CRC are at increased risk for CRC.⁸⁻¹² Genetic susceptibility to CRC includes well-defined inherited syndromes, such as Lynch syndrome (also known as hereditary nonpolyposis CRC [HNPCC]) and familial adenomatous polyposis (FAP).¹³⁻¹⁵ Therefore, it is recommended that all patients with colon cancer be queried regarding their family history and considered for risk assessment, as detailed in the NCCN Guidelines for Colorectal Cancer Screening. Results from a randomized controlled trial (RCT) suggest that most individuals without a personal history of CRC and with one first-degree relative with CRC diagnosed before age 50 years or two first-degree relatives with CRC diagnosed at any age can safely be screened with colonoscopy every 6 years.¹⁶ CRC is a heterogeneous disease. An international consortium recently reported a molecular classification, defining four different subtypes: CMS1 (microsatellite instability [MSI] Immune), hypermutated, microsatellite unstable (see *Lynch Syndrome* and *Microsatellite Instability*, below), with strong immune activation; CMS2 (Canonical), epithelial, chromosomally unstable, with marked WNT and MYC signaling activation; CMS3 (Metabolic), epithelial, with evident metabolic dysregulation; and CMS4 (Mesenchymal), prominent transforming growth factor β activation, stromal invasion, and angiogenesis. However, this classification is not yet recommended in clinical practice. ### **Lynch Syndrome** Lynch syndrome is the most common form of genetically determined colon cancer predisposition, accounting for 2% to 4% of all CRC cases. 13,14,18,19 This hereditary syndrome results from germline mutations in DNA mismatch repair (MMR) genes (*MLH1*, *MSH2*, *MSH6*, and *PMS2*). Although identifying a germline mutation in an MMR gene through sequencing is definitive for Lynch syndrome, patients usually undergo selection by considering family history and performing an initial test on tumor tissue before sequencing. One of two different initial tests can be performed on CRC specimens to identify individuals who might have Lynch syndrome: 1) immunohistochemical (IHC) analysis for MMR protein expression, which is often diminished because of mutation; or 2) analysis for MSI, which results from MMR deficiency and is detected as changes in the length of repetitive DNA elements in tumor tissue caused by the insertion or deletion of repeated units.²⁰ Testing the *BRAF* gene for mutation is indicated when IHC shows that *MLH1* expression is absent in the tumor. The presence of a *BRAF* mutation indicates that *MLH1* expression is down-regulated through somatic methylation of the promoter region of the gene and not through a germline mutation.²⁰ Testing for *MLH1* promoter methylation may also be used to determine this. Many NCCN Member Institutions and other comprehensive cancer centers now perform IHC and sometimes MSI testing on all newly diagnosed colorectal and endometrial cancers regardless of family history to determine which patients should have genetic testing for Lynch syndrome.²¹⁻²⁴ The cost effectiveness of this approach, referred to as universal or reflex testing, has been confirmed for CRC, and this approach has been endorsed by the Evaluation of Genomic Applications in Practice and Prevention (EGAPP) working group at the Centers for Disease Control and Prevention (CDC)²⁵⁻²⁷ and by the American Society for Clinical Pathology (ASCP), College of American Pathologists (CAP), Association for Molecular Pathology (AMP), and American Society of Clinical Oncology (ASCO) in a guideline on molecular biomarkers for CRC.²⁸ The U.S. Multi-Society Task Force on Colorectal Cancer also recommends universal genetic testing of tumors of all patients with newly diagnosed CRC, as does the American Gastroenterological Association. 29,30 The Cleveland Clinic recently reported on its experiences implementing such a screening
approach.31 The NCCN Colon/Rectal Cancer Panel endorses universal MMR or MSI testing of all patients with a personal history of colon or rectal cancer to identify individuals with Lynch syndrome. This testing is also relevant for adjuvant therapy planning for stage II disease and treatment selection in stage IV disease (see *Microsatellite Instability* and *Checkpoint Inhibitor Immunotherapy for dMMR/MSI-H Disease in the First-Line and Non-First-* *Line Settings*, below). An infrastructure needs to be in place to handle the screening results in either case. A more detailed discussion is available in the NCCN Guidelines for Colorectal Cancer Screening. #### The Role of Vitamin D in CRC Prospective studies have suggested that vitamin D deficiency may contribute to CRC incidence and/or that vitamin D supplementation may decrease CRC risk. 32-38 Furthermore, several prospective studies have shown that low vitamin D levels are associated with increased mortality of patients with CRC. 39-42 In fact, a systematic review and meta-analysis of five studies totaling 2330 patients with CRC compared the outcomes of patients in the highest and lowest categories of vitamin D levels and found better overall survival (OS) (hazard ratio [HR], 0.71; 95% CI, 0.55–0.91) and disease-specific mortality (HR, 0.65; 95% CI, 0.49–0.86) in those with higher vitamin D levels. 43 Another meta-analysis determined that the relationship between vitamin D levels and mortality is linear. 44 Results of a recent randomized, double-blind, placebo-controlled trial, however, showed that supplementation with vitamin D and/or calcium had no effect on the recurrence of colorectal adenomas within 3 to 5 years after removal of adenomas in 2259 participants. A later analysis of the same study reported that the effect of vitamin D supplementation on recurrence of advanced adenomas varied significantly based on the genotype of the vitamin D receptor, indicating that only individuals with specific vitamin D receptor alleles may benefit from vitamin D supplementation for prevention of advanced adenomas. Furthermore, no study has yet definitively shown that vitamin D supplementation improves outcomes in patients with CRC. Several studies have reported that supplementation did not improve survival.⁴⁷⁻⁴⁹ In addition, while the randomized, double-blind, phase II SUNSHINE trial reported a longer progression-free survival (PFS) for patients with previously untreated metastatic CRC (mCRC) randomized to standard treatment plus high-dose vitamin D supplementation compared to those randomized to standard treatment plus low-dose vitamin D supplementation (13.0 vs. 11.0 months), this difference was not significant (HR, 0.64; 95% CI, 0–0.90; P = .02). There was also no significant difference between high- and standard-dose vitamin D supplementation for overall response rate (ORR) or OS. In a 2010 report, the Institute of Medicine (now known as the National Academy of Medicine) concluded that data supporting a role for vitamin D were only conclusive in bone health, and not in cancer and other diseases. Citing this report and the lack of level 1 evidence, the panel does not currently recommend routine screening for vitamin D deficiency or supplementation of vitamin D in patients with CRC. #### Other Risk Factors for CRC It is well-recognized that individuals with inflammatory bowel disease (ie, ulcerative colitis, Crohn's disease) are at an increased risk for CRC.⁵²⁻⁵⁴ Other possible risk factors for the development of CRC include smoking, the consumption of red and processed meats, alcohol consumption, diabetes mellitus, low levels of physical activity, metabolic syndrome, and obesity/high body mass index (BMI).^{53,55-71} In fact, in the EPIC cohort of almost 350,000 individuals, those who adhered to five healthy lifestyle factors (healthy weight, physical activity, non-smoking, limited alcohol consumption, and healthy diet) had an HR for the development of CRC of 0.63 (95% CI, 0.54–0.74) compared with those who adhered to one or fewer of the factors.⁷² Other large studies support the conclusion that adherence to healthy lifestyle factors can reduce the risk of CRC.^{73,74} Some data suggest that consumption of dairy may lower risk for the development of CRC.^{70,75,76} However, a systematic review and meta-analysis of 15 cohort studies (>900,000 subjects; >5200 cases of CRC) only found an association between risk for colon cancer in males and the consumption of nonfermented milk.⁷⁷ No association was seen for rectal cancer in males or for colon or rectal cancer in females, and no association was seen for either cancer in either gender with consumption of solid cheese or fermented milk. Large cohort studies and meta-analyses suggest that other dietary factors may also lower the risk for CRC, including the consumption of fish and legumes.⁷⁸⁻⁸⁰ Furthermore, the use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) may also decrease the risk for CRC⁸¹⁻⁸⁶ although, evidence supporting this association is limited and variable.⁸⁷ While the U.S. Preventive Services Task Force (USPSTF) guidance previously recommended daily low-dose aspirin for CRC prevention,⁸⁸ the 2022 update concluded that there was insufficient evidence that aspirin use reduces CRC incidence.⁸⁹ In addition, some data suggest that smoking, metabolic syndrome, obesity, and red/processed meat consumption are associated with a poor prognosis. ^{57,90-94} Conversely, post-diagnosis fish consumption may be associated with a better prognosis. ⁹⁵ A family history of CRC increases risk while improving prognosis. ⁹⁶ Data on the effect of dairy consumption on prognosis after diagnosis of CRC are conflicting. ^{97,98} The relationship between diabetes and CRC is complex. Whereas diabetes and insulin use may increase the risk of developing CRC, treatment with metformin appears to decrease risk, at least in women. 99-108 Results of a small randomized study suggest that 1 year of low-dose metformin in non-diabetic patients with previously resected colorectal adenomas or polyps may reduce the likelihood of subsequent adenomas or polyps. 109 In addition, although patients with CRC and diabetes appear to have a worse prognosis than those without diabetes, 110,111 patients with CRC and diabetes treated with metformin seem to have a survival benefit over those not treated with metformin. 107,112,113 The data regarding the effects of metformin on CRC incidence and mortality, however, are not completely consistent, with some studies seeing no effect. 114,115 ### **Staging** Staging in colon cancer is based on the TNM (tumor, node, metastases) system. The TNM categories reflect very similar survival outcomes for rectal and colon cancer; these diseases therefore share the same staging system.⁶ In the 8th edition of the AJCC Staging Manual, T1 tumors involve the submucosa; T2 tumors penetrate through the submucosa into the muscularis propria; T3 tumors penetrate through the muscularis propria; T4a tumors directly penetrate to the surface of the visceral peritoneum; and T4b tumors directly invade or are adherent to other organs or structures.⁶ The T component of colon cancer staging is very important in prognostication, because analyses have shown that patients with T4,N0 tumors have a lower survival than those with T1–2,N1–2 tumors.¹¹⁶⁻¹¹⁸ Furthermore, in an analysis of 109,953 patients with invasive colon cancer included in the SEER colon cancer database from 1992 to 2004, the relative 5-year survival rate (ie, 5-year survival corrected by age-related morbidity) was considerably higher (79.6%) for patients with nodenegative T4a tumors compared with patients with nodenegative T4b tumors (58.4%).¹¹⁹ Regional lymph node classification includes N1a (1 positive lymph node); N1b (2–3 positive lymph nodes), N2a (4–6 positive nodes); and N2b (7 or more positive nodes). In addition, tumor deposit(s) in the subserosa, mesentery, or non-peritonealized pericolic or perirectal tissues without regional nodal metastasis (ie, satellite tumor nodules) have been classified as N1c. Within each T stage, survival is inversely correlated with N stage (N0, N1a, N1b, N2a, and N2b).⁶ Metastatic disease is classified as M1a when metastases that are limited to only one site/solid organ (including to lymph nodes outside the primary tumor regional drainage area) are positive. M1b is used for metastases to multiple distant sites or solid organs, exclusive of peritoneal carcinomatosis. The 8th edition of the AJCC Cancer Staging Manual includes the M1c category for peritoneal carcinomatosis with or without blood-borne metastasis to visceral organs.⁶ Patients with peritoneal metastases have a shorter PFS and OS than those without peritoneal involvement.¹²⁰ ### **Pathology** CRCs are usually staged after surgical exploration of the abdomen and pathologic examination of the surgical specimen. Some of the criteria that should be included in the report of the pathologic evaluation include the following: grade of the cancer; depth of penetration and extension to adjacent structures (T); number of regional lymph nodes evaluated; number of positive regional lymph nodes (N); an assessment of the presence of distant metastases to other organs, to the peritoneum or an abdominal structure, or in non-regional lymph nodes (M); the status of proximal, distal, radial, and mesenteric margins; lymphovascular invasion; perineural invasion (PNI); and tumor deposits.^{6,121-129} The prefixes "p" and "yp" used in TNM staging denote "pathologic staging" and "pathologic staging after neoadjuvant therapy and surgery," respectively.⁶ ### Margins In colon cancer, the radial margin (or circumferential resection margin, CRM) represents the adventitial soft tissue closest to the deepest penetration of the tumor. It is created surgically by blunt or sharp dissection of the retroperitoneal aspect, and it corresponds to any aspect of the colon that is not covered by a serosal layer of
mesothelial cells. It must be dissected from the retroperitoneum to remove the viscus. The serosal (peritoneal) surface does not constitute a surgical margin. The radial margins should be assessed in all colonic segments with non-peritonealized surfaces. In segments of the colon that are completely encased by peritoneum, such as the transverse colon, the mesenteric resection margin is the only relevant radial margin.⁶ On pathologic examination, it is difficult to appreciate the demarcation between the peritonealized surface and the non-peritonealized surface. The surgeon is therefore encouraged to mark the area of non-peritonealized surface with a clip or suture.⁶ In a study of 608 patients with rectal cancer, a positive radial margin was shown to be a negative prognostic factor for both local recurrence and OS.¹³⁰ Patients who have had CRM-positive resections had a 38.2% local recurrence rate, whereas those with CRM-negative resections had a 10.0% local recurrence rate.¹³⁰ ### **Lymph Nodes** The number of lymph nodes evaluated is important to note on the pathology report. A secondary analysis of patients from the Intergroup Trial INT-0089 showed that an increase in the number of lymph nodes examined was associated with increased survival for patients with both node-negative and node-positive disease. 131 In addition, results from population-based studies show an association between improvement in survival and examination of greater than or equal to 12 lymph nodes. 132,133 The mechanism for this correlation is poorly understood. It has been hypothesized that the analysis of more lymph nodes would result in more accurate staging and thus better tailored treatments, but more recent results suggest that this idea is not correct. 134-136 Instead it is likely that other factors associated with lymph node harvest are important for the survival advantage. For instance, the extent and quality of surgical resection can have an impact on the node harvest. 137 The number of regional lymph nodes retrieved from a surgical specimen also varies with age of the patient, gender, and tumor grade or site. 131,132,138,139 In addition, it has been suggested that lymph nodes in patients who have a strong anti-cancer immune response are easier to find, and that such patients have an improved prognosis. 140 Another possibility is that the underlying tumor biology affects lymph node yield and prognosis in parallel. For instance, MSI and wild-type *KRAS/BRAF* have been associated with both improved prognosis and increased lymph node retrieval.^{141,142} Regardless of the mechanism for the observed correlation, the panel recommends examination of a minimum of 12 lymph nodes. This recommendation is supported by CAP¹⁴³ and the 8th edition of the AJCC Cancer Staging Manual,⁶ which also specify pathologic examination of a minimum of 12 lymph nodes. Notably, emerging evidence suggests that a greater number of nodes may need to be examined in some situations, particularly for T4 lesions, to provide an adequate assessment of disease stage.¹⁴⁴ For stage II (pN0) colon cancer, it is recommended that the pathologist go back to the specimen and submit more tissue of potential lymph nodes if fewer than 12 nodes were initially identified. Patients considered to have N0 disease but for whom fewer than 12 nodes have been examined are suboptimally staged and should be considered to be at higher risk. The ratio of positive lymph nodes to the total number of lymph nodes examined is also being evaluated for possible prognostic impact. Case series have suggested cutoffs of 0.1, 0.2, or 0.25 as lymph node ratios that are prognostic for OS or PFS. 145-148 A systematic review and meta-analysis of 33 studies that included greater than 75,000 patients with node-positive CRC concluded that a higher lymph node ratio was significantly associated with shorter OS and disease-free survival (DFS). 149 Analysis of the SEER database, however, suggests that the lymph node ratio does not adequately represent the different effects of both the number of positive lymph nodes and the number of lymph nodes examined. 150 The potential benefit of sentinel lymph node evaluation for colon cancer has mostly been associated with providing more accurate staging of nodal pathology through detection of micrometastatic disease in the sentinel node(s).¹⁵¹ Results of studies evaluating the sentinel node for micrometastatic disease through use of hematoxylin and eosin (H&E) staining to identify small foci of tumor cells and the identification of particular tumor antigens through IHC have been reported.¹⁵¹⁻¹⁵⁶ There is also a potential benefit of assessing regional lymph nodes for micrometastases and isolated tumor cells. 154,157-160 The 8th edition of the AJCC Cancer Staging Manual considers clusters of 10 to 20 tumor cells, or clumps of tumor that measure at least 0.2 mm in diameter, but smaller than 2 mm, in diameter to be micrometastases. Such micrometastases have been shown to be a poor prognostic factor. One study of 312 consecutive patients with pN0 disease found that positive cytokeratin staining was associated with a higher risk of recurrence. 161 Relapse occurred in 14% of patients with positive nodes compared to 4.7% of those with negative nodes (HR, 3.00; 95% CI, 1.23–7.32; *P* = .013). A 2012 systematic review and meta-analysis came to a similar conclusion, finding decreased survival in patients with pN0 tumors with IHC or reverse transcriptase polymerase chain reaction (RT-PCR) evidence of tumor cells in regional nodes. A 2014 meta-analysis also found that the presence of micrometastases increases the likelihood of disease recurrence. ### **Tumor Deposits** Tumor deposits, also called extranodal tumor deposits, peritumoral deposits, or satellite nodules, are irregular discrete tumor deposits in the pericolic or perirectal fat that show no evidence of residual lymph node tissue but are within the lymphatic drainage of the primary tumor. They are not counted as lymph nodes replaced by tumor. Most of these tumor deposits are thought to arise from lymphovascular invasion or, occasionally, PNI. 164,165 The number of tumor deposits should be recorded in the pathology report, because they have been shown to be associated with reductions in DFS and OS. 128,129,166,167 Multivariate survival analysis in one study showed that patients with pN0 tumors without satellite nodules had a 91.5% 5-year survival rate compared with a 37.0% 5-year survival rate for patients with pN0 tumors and the presence of satellite nodules (P < .0001).¹²⁹ #### **Perineural Invasion** Several studies have shown that the presence of PNI is associated with a significantly worse prognosis. 125-127,166,168-171 For example, one retrospective analysis of 269 consecutive patients who had colorectal tumors resected at one institution found a four-fold greater 5-year survival in patients with tumors without PNI versus patients whose tumors invaded nearby neural structures. 126 Multivariate analysis of patients with stage II rectal cancer showed that patients with tumors with PNI have a significantly worse 5-year DFS compared with those without PNI (29% vs. 82%; *P* = .0005). 127 Similar results were seen for patients with stage III disease. 125 A meta-analysis that included 58 studies and 22,900 patients also found that PNI is associated with a worse 5-year OS (relative risk [RR], 2.09; 95% CI, 1.68–2.61) and 5-year DFS (RR, 2.35; 95% CI, 1.66–3.31). 169 PNI is therefore included as a high-risk factor for systemic recurrence. ### **Tumor Budding** Tumor budding is defined as the presence of a single cell or a cluster of four or fewer neoplastic cells as detected by H&E staining at the advancing edge of an invasive carcinoma. As specified by the 2016 International Tumor Budding Consensus Conference (ITBCC), the total number of buds should be reported from a selected hot spot measuring 0.785 mm². ¹¹²² Budding is separated into three tiers: low (0–4 buds), intermediate (5–9 buds), and high (≥10 buds). Several studies have shown that high-grade tumor budding in pT1 CRC or malignant polyps is associated with an increased risk of lymph node metastasis, although the methodologies for assessing tumor budding were not uniform.¹⁷³⁻¹⁷⁷ Studies have also supported tumor budding as an independent prognostic factor for stage II colon cancer. A retrospective study that assessed tumor budding in 135 stage II colon cancer specimens according to ITBCC criteria found that tumor budding correlated with survival outcomes. 178 Disease-specific survival (DSS) was 89% for low-tier tumor budding, 73% for intermediate-tier, and 52% for high-tier (P = .001). Another retrospective study evaluated 174 stage II colon cancer specimens for tumor budding.¹⁷⁹ This study also used the ITBCC criteria and found tumor budding to be independently associated with DSS (P = .01); specifically, 5-year DSS was 96% for low-tier tumor budding compared to 92% for high-tier for all patients. The difference was even more dramatic for those patients who received no adjuvant chemotherapy. For these patients, 5-year DSS was 98% for low-tier tumor budding versus 80% for high-tier (P = .008). A post-hoc analysis of the PRODIGE-GERCOR study also reported that tumor budding is an independent prognostic factor for both DFS and OS in stage III colon cancer. 180 Tumor budding is therefore included as a high-risk factor for recurrence and may inform decisions related to adjuvant therapy. ### **Appendiceal Neoplasms** ### Pathologic and Molecular Classification Primary appendiceal neoplasms are rare and most often found incidentally during an appendectomy following clinical presentation of acute appendicitis. Management and treatment of primary appendical cancers are dependent on classification, grading, and staging of these neoplasms. ¹⁸¹ Appendicial neoplasms can be histopathologically classified as neuroendocrine neoplasms (NENs), mucinous neoplasms, goblet cell
adenocarcinomas (GCAs), colonic-type adenocarcinomas (non-mucinous), and signet ring cell carcinomas (epithelial origin). ^{182,183} Mucinous neoplasms can be further subclassified into low-grade appendicial mucinous neoplasms (LAMNs), high-grade appendicial mucinous neoplasms (HAMNs), and mucinous adenocarcinomas with or without signet ring cells. Both colonic-type adenocarcinoma and colorectal adenocarcinoma develop from precancerous adenomas and are managed and treated similarly.^{184,185} In contrast, GCAs are primarily composed of epithelial and neuroendocrine elements and characteristically contain goblet cells. Neuroendocrine cells are composed of enterochromaffin-like cells (ECLs) and often produce serotonin.¹⁸³ #### Appendiceal Adenocarcinomas Histopathologic features of LAMN present as circumferential proliferation of low-grade mucinous epithelium with a pushing pattern into the lamina propria, submucosa, muscularis propria, and into the subserosa. RAMN can also present with fibrosis of the submucosa, pushing patterns resembling diverticulum, and mucin and/or cells from the neoplasm outside of the appendix. HAMNs have similar features to LAMN but have more extensive and complex atypical cytologic features. Comparably, both LAMN- and HAMN-classified tumors lack infiltrative invasion and are both maintained within the appendix. 181 Data suggest that appendiceal mucinous neoplasms (AMNs) develop from the same mutational sequence as colorectal carcinomas beginning with a point mutation in *KRAS*. In addition, genetic mutations in *GNAS* and *RNF43* are found in both LAMN and HAMN, which further supports the theory that HAMN tumors progress from LAMN tumors.¹88-¹90 In contrast, HAMN tumors have been shown to harbor additional mutations in *TP53*, *ATM*, and *APC*, which may be linked to their more aggressive phenotype.¹89-¹9¹ In addition, mucinous adenocarcinomas resemble LAMNs and HAMNs but with the presence of infiltrative invasion (instead of the signature pushing pattern seen in the mucinous neoplasms). Mucinous adenocarcinomas can be further subclassified based on the presence of signet ring cells. If a tumor is composed of ≤50% signet ring cells, then it is classified as a mucinous adenocarcinoma with signet ring cells. If there is a presence of >50% signet ring cells, then the tumor is classified as a signet ring cell carcinoma.¹8¹ The cells that compose the mucinous adenocarcinomas produce an excess of extra- and intracellular mucin; the intracellular mucin displaces the cell's nuclei resulting in its characteristic ring-like appearance. ¹⁹² It has been well-established that the presence of signet ring cells leads to a poorer prognosis; 10% to 40% of patients with G3 (poorly differentiated) mucinous adenocarcinoma with signet ring cells have a 5-year OS. ¹⁹³⁻¹⁹⁵ The eighth edition of the AJCC Staging Manual now uses the following terminology to further characterize appendiceal neoplasms: well, moderately, and poorly differentiated with corresponding alphanumeric classification of G1, G2, and G3, respectively. ¹⁸¹ Due to the rarity of appendiceal adenocarcinomas (AAs), treatment typically follows CRC despite AAs having distinct histologic, biological, and clinical manifestations. A recent molecular analysis was performed on patients diagnosed with mucinous AAs (MAAs) in order to guide clinical decision-making. Out of 164 MAAs tested, 24 were predominantly RASmutated with GNAS and TP53 wild-type (wt). 196 This tumor type has significantly fewer mutations and chromosomal alterations when compared to GNAS or TP53 mutation predominance, and OS in this subgroup was improved when compared to GNAS-mutant (P = .05) and TP53-mutant (P= .04) tumors. In addition, RAS-mutant predominant tumors had reduced tumor bulk (P = .04) and stromal invasion (P < .01) and responded more to first-line chemotherapy (50%) compared to GNAS-mutant predominant (6%, P = .03) tumors. ¹⁹⁶ The following molecular subtypes were identified in this study: RAS-mutant/GNAS-wt/TP53-wt, which was typically clinically indolent; GNAS-mutant predominance, which showed chemotherapy resistance; and TP53-mutant predominance, which was highly aneuploid and aggressive. This clinical behavior was observed regardless of histopathology. 196 #### Goblet Cell and Neuroendocrine Carcinomas of the Appendix Appendiceal goblet cell carcinomas (GCCs) account for approximately 14% to 19% of primary appendiceal neoplasms and consist of both glandular epithelial cells and neuroendocrine components. 184, 197, 198 GCCs are considered mixed adenoneuroendocrine carcinomas (MANECs) and display the immunohistochemical staining consistent with neuroendocrine markers but behave more aggressively like an adenocarcinoma. For this reason, it is recommended to clinically treat GCCs as an adenocarcinoma. 199,200 Appendical neuroendocrine carcinomas (ANCs) can develop in the jejunum/ileum, appendix, or cecum. They are composed of ECLs in the bowel wall and can often produce serotonin. 183 They are usually indolent tumors when found in the appendix or the rectum but progress more aggressively when found in the colon.²⁰¹ ANCs are usually asymptomatic and found incidentally if tumor development occurs at the tip of the appendix, but can cause symptomatic obstruction and appendicitis if found in the mid or proximal portions.²⁰¹ Progression and OS of the patient is dependent on the histologic subtype of the appendiceal neoplasm.200 #### **Clinical Presentation** Patients typically present with symptoms resembling appendicitis, which include but are not limited to: abdominal pain in the right lower quadrant, vomiting, change in bowel habits, intestinal obstruction, compression of the ureters, and nausea. 202-205 There should be increased suspicion of an appendiceal neoplasm if the patient is >50 years of age with a family history of inflammatory bowel disease, colon cancer, and/or unexplained anemia. 206 Additionally, if appendicitis is treated nonoperatively (typically with antibiotics), repeat interval imaging is crucial to ensure that the imaging findings resolve. Lack of resolution may suggest an appendiceal malignancy. Diagnosing neoplasms of the appendix is challenging and symptoms may overlap with colon cancer, gynecologic cancers, or varying abdominal pathologies. Diagnostic tests to be considered at initial presentation include imaging studies such as CT/MRI, endoscopy, tumor biopsy, and in some cases surgery, in addition to a thorough medical history and physical examination.²⁰⁷ An appendix greater than 15 mm on a CT or MRI with an irregular or thickened wall is suggestive of appendiceal carcinoma.²⁰⁸ Nonspecific abdominal bloating/distention and/or postprandial discomfort may also be observed with mucinous peritoneal involvement. Colonoscopy is recommended if the patient has been diagnosed with mucinous adenocarcinoma of the appendix as there is an increased risk of colonic polyps and neoplasia.^{208,209} Tumor biomarkers CEA and CA 19-9 can be evaluated and used as prognostic indicators for patients receiving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC).²¹⁰ In a recent study, a multivariate analysis was performed to establish predictors of disease progression using tumor biomarkers. This analysis concluded that when CA 19-9 was elevated preoperatively, progression-free survival (PFS) was unfavorable. Additionally, when CEA was elevated preoperatively, OS was also unfavorable.²¹⁰ CA-125 level was inconclusive in this study; however, other studies suggest normal serum levels of CA-125 and CA 19-9 correspond to an increase in survival and a decrease in recurrence.²¹¹ Tumor differentiation and classification were the strongest predictors of both PFS and OS. # Workup and Management of Localized Appendiceal Adenocarcinoma A screening colonoscopy is recommended in all patients diagnosed with AA to rule out synchronous large polyps or cancer. CT of the chest, abdomen, and pelvis is also recommended for evaluation of the primary tumor and any possibility of metastatic disease.²¹¹ Tis- and T1-staged tumors may be managed with appendectomy alone if negative margins are obtained during resection and there is no evidence of angiolymphatic invasion. T1 and T2 tumors with unfavorable characteristics such as angiolymphatic invasion or positive margins should be considered for a right hemicolectomy and removal of 12 or more lymph nodes for accurate resection and staging. 183 Extrapolating from CRC, patients with stage III (nodal involvement) or stage II colonic-type AA should be considered for adjuvant systemic chemotherapy. A univariate and multivariate analysis was performed on patients diagnosed with stage II and stage III GCC who received surgical resection and adjuvant chemotherapy to evaluate the impact of adjuvant chemotherapy on OS. Out of 619 patients, adjuvant chemotherapy was administered in 9.4% (N = 48) of stage II and 47.7% (N = 51) of stage III individuals. For patients with stage III disease, 5-year OS was 96.9% with adjuvant chemotherapy and 89.1% without adjuvant chemotherapy (P = .236). Patients with stage III disease had a 5-year OS of 77.1% with adjuvant chemotherapy and 42.8% without adjuvant chemotherapy (P = .003). This study concluded that administration of adjuvant chemotherapy was associated with better OS in patients with stage III GCC. 212 In certain patients who are candidates for disease monitoring, surveillance imaging should occur at least annually and may occur more frequently in patients with acellular mucinous spread noted during surgery. If evidence of appendiceal rupture and dissemination of tumor cells were found outside of the appendix, imaging may not be a reliable source for accurate disease monitoring. If there is clinical suspicion of active disease (eg, symptoms, elevated tumor markers) despite unremarkable imaging, laparoscopy should be considered. ## Workup and Management of Metastatic Appendiceal
Adenocarcinoma The heterogeneity of the appendical neoplasms causes a varying risk of metastasis across histologic tumor types. Distant metastasis in colonic-type adenocarcinomas has been reported in 23% to 37% of cases with the most common site being dissemination to the peritoneum, with metastasis to the liver and lung being less common. The pathologic M stage distinguishes between intraperitoneal acellular mucin only (M1a), intraperitoneal mucinous epithelium (M1b), and non-intraperitoneal metastasis (M1c). If metastasis spreads beyond the peritoneum, then treatment should follow the NCCN Guidelines for Colon Cancer recommendations for metastatic disease. Appendical neoplasms (mucinous and non-mucinous) tend to metastasize within the peritoneal cavity through various ways of dissemination. Metastasis of a mucinous adenocarcinoma can arise from the excess secretion of mucin from neoplastic epithelial cells. This results in appendiceal rupture and spread of mucin and tumor cells within the peritoneal cavity leading to neoplastic epithelial cells adhering to the peritoneal surface and causing varying sized lesions. 183,214 The clinical syndrome of mucinous ascites was once referred to as pseudomyxoma peritonei (PMP), but has since been further subclassified into multiple histologic grading systems by the World Health Organization (WHO). PMP is now used as an outdated umbrella term for the following classifications: low-grade mucinous carcinoma peritonei (MCP-L), which is also synonymous with the previous classification of DPAM (disseminated peritoneal adenomucinosis). MCP-L presents as mucin pools with less than 10% cellularity and non-stratified cuboidal epithelium that lack infiltrative growth. ²¹⁵ High-grade mucinous carcinoma peritonei (MCP-H) is synonymous with the previous classification, peritoneal mucinous carcinomatosis (PMCA), presenting with mucin pools of high atypical cellularity, high mitotic index, cribriform growth pattern, and infiltrative invasion of underlying organs. An MCP-H classification with the presence of signet ring cells is denoted MCP-H-S and was previously classified as PMCA-S. ²¹⁵ Cytotoxic chemotherapy with efficacy against CRC is used to treat AA. It is reasonable to use other targeted therapy options for microsatellite instability-high (MSI-H), BRAF mutation, or HER2 status, which is consistent with recommendations within the NCCN Guidelines for Colon Cancer and NCCN Guidelines for Rectal Cancer. There is no clear evidence for anti-epidermal growth factor receptor (EGFR) therapy even if the patient's tumor is RAS/RAF wt. A retrospective medical record review of patients with AA was conducted to test for differentials in OS when adjuvant chemotherapy followed complete cytoreduction.²¹⁶ In total, 103 patients with AA were enrolled in the study, and 68 patients (66%) achieved a cytoreductive score of 0-1. Out of these 68 patients, 26 received adjuvant chemotherapy. The median OS was 9.03 years compared to 2.88 years in those who did not receive adjuvant chemotherapy (P = .02). This increase in OS was only observed in patients who did not have low-grade AA.²¹⁶ This study suggests that adjuvant chemotherapy does not have a benefit in patients with LAMN but does show an increase of OS in patients with other histologic tumor types. In addition, a study was conducted to identify the association of systemic chemotherapy and survival in patients with grade 1, stage IV appendical mucinous neoplasm (low-grade appendiceal neoplasm). Out of 639 patients identified, 5-year OS for patients not undergoing chemotherapy was 52.9% and for patients undergoing chemotherapy was 61.3%. No association between receiving chemotherapy and OS was observed in this cohort.217 In select patients diagnosed with metastatic spread to the peritoneum, CRS and HIPEC have the potential to be curative. ^{218,219} CRS and HIPEC are associated with morbidity and mortality, and it is imperative that a capable multidisciplinary medical team perform extensive preoperative tests to deem a patient fit for this combination therapy. The intent of CRS is to achieve maximum cytoreduction before the initiation of HIPEC. Because of this, presurgical evaluation of peritoneal involvement is recommended and can be achieved through laparoscopy and the peritoneal carcinomatosis index (PCI) scoring system.²²⁰ The PCI quantifies the distribution of tumors throughout 13 regions of the abdomen and pelvis along with a lesion size score. Cases with higher PCI scores are associated with worse prognosis and lack of benefit from CRS.²²¹ The completeness of cytoreduction score (CC) is also used to determine patient prognosis after surgery. Complete cytoreduction is denoted with a CC-0 or CC-1, while incomplete cytoreduction is denoted with a CC-2 or a CC-3.²²¹ Complete cytoreduction is defined by the removal of all macroscopic disease found on the peritoneum or surrounding viscera. For unresected tumors, the size of each tumor cannot be greater than 2.5 mm in size. This is because intraperitoneal chemotherapy is not effective against tumors larger than 2.5 mm.²²² In addition, for appendical tumors and PMP, the grade of the tumor and its histologic features also have an impact on the outcome of complete cytoreduction.²²² Once an individual is deemed a candidate for CRS/HIPEC they should continue chemotherapy for up to 6 months, preferably in the neoadjuvant setting. Additional chemotherapy may be considered for patients whose disease is not resectable at initial diagnosis but has the potential to convert to resectable disease.²¹⁹ In successful cases, data suggest that the combined therapeutic approach of CRS and HIPEC offered patients a 15-year survival rate of 59% and a PFS of 8.2 years.²²³ Patients are discouraged from CRS if they have been diagnosed with biliary obstruction, extensive disease at the gastrohepatic ligament/porta hepatis, extensive retroperitoneal disease, intraparenchymal liver lesions (requiring major resection), diffuse small bowel serosa/mesenteric involvement, and/or multiple sites of small bowel obstruction. If a patient is not a candidate for surgery, treatment should follow metastatic colon cancer guidelines, as found in the <u>NCCN Guidelines for Colon Cancer</u>. Prognosis is best for patients when disease is localized only. # **Clinical Presentation and Treatment of Nonmetastatic Disease** #### Workup and Management of the Malignant Polyp A malignant polyp is defined as one with cancer invading the submucosa (pT1). Conversely, polyps classified as carcinoma in situ (pTis) have not penetrated the submucosa and are therefore not considered capable of regional nodal metastasis. The panel recommends marking the polyp site during colonoscopy or within 2 weeks of the polypectomy, if appropriate. Testing for MMR/MSI should be done during the initial workup to help with diagnosis of Lynch syndrome and inform treatment decision-making. Before making a decision about surgical resection for an endoscopically resected adenomatous polyp or adenoma, physicians should review the pathology and consult with the patient.²²⁴ In patients with invasive cancer in a pedunculated or sessile polyp (adenoma), no additional surgery is required if the polyp has been completely resected and has favorable histologic features.^{225,226} Favorable histologic features include lesions of grade 1 or 2, no angiolymphatic invasion, and a negative resection margin. However, in addition to the option of observation, the panel includes the option of colectomy in patients with a completely removed, singlespecimen, sessile polyp with favorable histologic features and clear margins. This option is included because the literature seems to indicate that patients with sessile polyps may have a significantly greater incidence of adverse outcomes, including disease recurrence, mortality, and hematogenous metastasis compared with those with pedunculated polyps. This increased incidence likely occurs because of the high probability of a positive margin after endoscopic removal.²²⁷⁻²²⁹ If the polyp specimen is fragmented, the margins cannot be assessed; if the specimen shows unfavorable histopathology, additional workup including complete blood count (CBC), chemistry profile, carcinoembryonic antigen (CEA) determination, chest/abdominal/pelvic CT, and consideration of pelvic MRI should be performed to better assess for local staging and extent of disease (see Workup and Management of Invasive Nonmetastatic Colon Cancer for more details on this workup). If appropriate following workup, colectomy with en bloc removal of lymph nodes is recommended.^{224,230-232} Laparoscopic surgery is an option.²³³ Unfavorable histopathologic features for malignant polyps include grade 3 or 4, angiolymphatic invasion, or a positive margin of resection. 175,234 Notably, no consensus currently exists as to the definition of what constitutes a positive margin of resection. A positive margin has been defined as the presence of tumor within 1 to 2 mm of the transected margin or the presence of tumor cells within the diathermy of the transected margin. 224,235-237 In addition, several studies have shown that tumor budding is an adverse histologic feature associated with adverse outcome and may preclude polypectomy as an adequate treatment of endoscopically removed malignant polyps.²³⁸⁻²⁴¹ All patients who have malignant polyps removed by transanal excision or transabdominal resection should undergo total colonoscopy to rule out other synchronous polyps and should subsequently undergo appropriate follow-up surveillance endoscopy. Adjuvant chemotherapy is not recommended for patients with stage I lesions. #### Workup and Management of Invasive Nonmetastatic Colon Cancer Patients who present with invasive colon cancer appropriate for resection require a complete staging workup, including biopsy, pathologic tissue review, total colonoscopy, CBC, chemistry profile, CEA determination, and
baseline CT scans of the chest, abdomen, and pelvis.²⁴² Testing for MMR/MSI should be done at diagnosis to help with detection of Lynch syndrome and to inform treatment decision-making. CT should be with intravenous (IV) and oral contrast. If the CT of the abdomen and pelvis is inadequate or if CT with IV contrast is contraindicated, an abdominal/pelvic MRI with contrast plus a non-contrast chest CT should be considered. The chest CT can identify lung metastases, which occur in approximately 4% to 9% of patients with colon and rectal cancer. 243-245 One series of 378 patients found that resection of pulmonary metastases resulted in 3-year recurrence-free survival of 28% and 3-year OS of 78%. 246 Fertility risks should be discussed with appropriate patients prior to treatment and referral for and/or counseling on fertility preservation options should be done if indicated (see the NCCN Guidelines for Adolescent and Young Adult Oncology for more information on this topic). The consensus of the panel is that a PET/CT scan is not indicated at baseline for preoperative workup. In fact, PET/CT scans are usually done without contrast and multiple slicing and do not obviate the need for a contrast-enhanced diagnostic CT scan. If, however, abnormalities are seen on CT or MRI scan that are considered suspicious but inconclusive for metastases, then a PET/CT scan may be considered to further delineate that abnormality, if this information will change management. A PET/CT scan is not indicated for assessing subcentimeter lesions, because these are routinely below the level of PET/CT detection. For resectable colon cancer that is causing overt obstruction, one-stage colectomy with en bloc removal of regional lymph nodes, resection with diversion, or diversion or stent (in selected cases) followed by colectomy are options. Stents are generally reserved for cases of distal lesions in which a stent can allow decompression of the proximal colon with later elective colostomy with primary anastomosis.²⁴⁷ A meta-analysis found that oncologic outcomes were similar for surgery and for stenting followed by elective surgery.²⁴⁸ This result was supported by the ESCO trial, an RCT from Europe that reported similar outcomes between colonic stenting as a bridge to surgery compared to emergency surgery for malignant colon obstruction. Another meta-analysis of comparative studies compared colectomy to diversion followed by colectomy. Although 30-day mortality and morbidity were the same between the groups, the diversion group was less likely to have a permanent colostomy (OR, 0.22; 95% CI, 0.11–0.46). Preoperative stoma education and marking of the site by an enterostomal therapist have been shown to improve outcomes and are therefore recommended for patients who are expected to receive a stoma following surgery. Bulky nodal disease or clinical T4b may benefit from neoadjuvant therapy prior to resection, oxaliplatin-based chemotherapy for MMR-proficient (pMMR)/ microsatellite-stable (MSS) disease and either chemotherapy or a checkpoint inhibitor for cT4b deficient MMR dMMR/ MSI-high (MSI-H) disease. If the cancer is locally unresectable or the patient is medically inoperable, systemic therapy, radiation, and/or chemoradiation is recommended, possibly with the goal of converting the lesion to a resectable state. #### Neoadjuvant Therapy for Resectable Colon Cancer For bulky nodal disease or clinical T4b, neoadjuvant treatment with FOLFOX or CAPEOX may be considered prior to surgery. The randomized phase III FOxTROT trial is assessing whether this approach improves DFS. Results from the feasibility phase of the trial were reported in 2012. 255 One hundred fifty patients with T3 (with \geq 5 mm invasion beyond the muscularis propria) or T4 tumors were randomly assigned to three cycles of preoperative therapy (5-FU/LV/oxaliplatin), surgery, and nine additional cycles of the same therapy or to surgery with 12 cycles of the same therapy given postoperatively. Preoperative therapy resulted in significant downstaging compared with postoperative therapy (P = .04), with acceptable toxicity. Mature results from the FOxTROT trial reported on 1053 total randomized patients, including 699 randomized to neoadjuvant chemotherapy and 354 to the control group. 256 The primary outcome of 2-year residual or recurrent disease was 16.9% with neoadjuvant chemotherapy compared to 21.5% in the control group, representing a 28% lower recurrence rate with neoadjuvant chemotherapy. The neoadjuvant chemotherapy group showed marked T and N downstaging and histologic tumor regression. Resection was more often histopathologically complete with neoadjuvant chemotherapy compared to control (94% vs. 89%; P < .001). These results support the feasibility of neoadjuvant therapy as a treatment option for colon cancer. For the dMMR/MSI-H population, the NICHE and NICHE-2 studies have shown high rates of pathologic response with neoadjuvant immunotherapy in early-stage colon cancers prior to resection. ^{257,258} An abstract on the NICHE-2 study reported results from 107 patients with non-metastatic dMMR colon cancer treated with ipilimumab plus nivolumab. ²⁵⁸ In the efficacy population, 106 (99%) were observed to have pathologic disease response, including 95% major pathologic responses and 4% partial responses. At a median follow-up of 13 months, no cases of disease recurrence were reported. Grade 3–4 immune-related adverse events (AEs) were reported in 3% of patients. While neoadjuvant chemotherapy with FOLFOX or CAPEOX is considered an option by the NCCN Panel for cT4b dMMR/MSI-H disease, it is important to note that the FOxTROT trial results reported little benefit from neoadjuvant chemotherapy for patients with dMMR tumors, leading checkpoint inhibitor therapy to be the preferred approach in this setting. ²⁵⁶ #### Surgical Management For resectable non-metastatic colon cancer, the preferred surgical procedure is colectomy with en bloc removal of the regional lymph nodes.^{259,260} The extent of colectomy should be based on the tumor location, resecting the portion of the bowel and arterial arcade containing the regional lymph nodes. Other nodes, such as those at the origin of the vessel feeding the tumor (ie, apical lymph node), and suspicious lymph nodes outside the field of resection, should also be biopsied or removed if possible. Resection must be complete to be considered curative, and positive lymph nodes left behind indicate an incomplete (R2) resection.²⁶¹ There has been some attention focused on the quality of colectomy. 262 A retrospective observational study found a possible OS advantage for surgery in the mesocolic plane over surgery in the muscularis propria plane.²⁶³ A comparison of resection techniques by expert surgeons in Japan and Germany showed that complete mesocolic excision (CME) with central vascular ligation resulted in greater mesentery and lymph node yields than the Japanese D3 high tie surgery.²⁶⁴ Differences in outcomes were not reported. A retrospective, population-based study in Denmark also supports the benefit of a CME approach in patients with stage I-III colon cancer, with a significant difference in 4-year DFS (P = .001) between those undergoing CME resection (85.8%; 95% CI, 81.4–90.1) and those undergoing conventional resection (75.9%; 95% CI, 72.2-79.7).²⁶⁵ A systematic review found that four of nine prospective studies reported improved lymph node harvest and survival with CME compared with non-CME colectomy; the other studies reported improved specimen quality.266 #### **Minimally Invasive Approaches to Colectomy** Laparoscopic colectomy is an option in the surgical management of colon cancer.²⁶⁷⁻²⁷⁰ In a small European randomized trial (Barcelona), the laparoscopic approach seemed to be associated with some modest survival advantage, significantly faster recovery, and shorter hospital stays.²⁷¹ More recently, a similar but larger trial (COLOR trial) of 1248 patients with colon cancer randomly assigned to curative surgery with either a conventional open approach or laparoscopic-assisted surgery showed a nonsignificant absolute difference of 2.0% in 3-year DFS favoring open colectomy.²⁷² Noninferiority of the laparoscopic approach could not be established because of study limitations. Ten-year outcomes of the COLOR trial also showed similar rates of DFS, OS, and recurrence between open and laparoscopic surgery.²⁷³ In the CLASICC study of 794 patients with CRC, no statistically significant differences in 3-year rates of OS, DFS, and local recurrence were observed between these surgical approaches.²⁷⁴ Long-term follow-up of participants in the CLASICC trial showed that the lack of differences in outcomes between arms continued over a median 62.9 months.²⁷⁵ In another trial (COST study) of 872 patients with colon cancer randomly assigned to undergo either open or laparoscopic-assisted colectomy for curable colon cancer, similar 5-year recurrence and 5-year OS rates were seen after a median of 7-year follow-up.^{276,277} A similar RCT in Australia and New Zealand also found no differences in disease outcomes.²⁷⁸ In addition, results of several meta-analyses have supported the conclusion that the two surgical approaches provide similar long-term outcomes with respect to local recurrence and survival in patients with colon cancer.²⁷⁹⁻²⁸⁴ Factors have been described that may confound conclusions drawn from randomized studies comparing open colectomy with laparoscopic-assisted surgery for colon cancer.^{285,286} A subanalysis of results from the COLOR trial evaluating short-term outcomes (eg, conversion rate to open colectomy, number of lymph nodes collected, number of complications) based on hospital case volume indicated that these outcomes were statistically significantly more favorable when laparoscopic surgery was performed at hospitals with high case volumes.²⁸⁷ A meta-analysis of 18 studies (6153 patients) found a lower rate of
cardiac complications with laparoscopic colectomy compared with open resection.²⁸⁸ Analyses of large national databases also support the benefits of the laparoscopic approach.^{289,290} In recent years, perioperative care has improved, with reductions in the average length of hospital stay and complication rates after surgery.^{291,292} The multicenter, randomized, controlled EnROL trial therefore compared conventional and laparoscopic colectomy with an enhanced recovery program in place.²⁹³ Outcomes were the same in both arms, with the exception of median length of hospital stay, which was significantly shorter in the laparoscopic group (5 vs. 7 days; P = .033). Robotic colectomy has been compared to the laparoscopic approach, mostly with observational cohort studies.²⁹⁴⁻²⁹⁷ In general, the robotic approach results in longer operating times and is more expensive but may be associated with less blood loss, shorter time to recovery of bowel function, shorter hospital stays, and lower rates of complications and infections. The panel recommends that minimally invasive colectomy be considered only by surgeons experienced in the techniques. A thorough abdominal exploration is required as part of the procedure. Routine use of minimally invasive colon resection is generally not recommended for tumors that are acutely obstructed or perforated or tumors that are clearly locally invasive into surrounding structures (ie, T4). Patients at high risk for prohibitive abdominal adhesions should not have minimally invasive colectomy, and those who are found to have prohibitive adhesions during exploration should be converted to an open procedure.^{233,298,299} #### **Adjuvant Chemotherapy for Resectable Colon Cancer** Choices for adjuvant therapy for patients with resected, nonmetastatic colon cancer depend on the stage of disease: - Patients with stage I disease and patients with MSI-H, stage II disease do not require any adjuvant therapy. - Patients with low-risk stage II disease that is MSS or pMMR can be observed without adjuvant therapy or considered for capecitabine or 5-FU/leucovorin (LV). Based on results of the MOSAIC trial,³⁰⁰⁻ - ³⁰² and the possible long-term sequelae of oxaliplatin-based chemotherapy, the panel does not consider FOLFOX (infusional 5-FU, LV, oxaliplatin) to be an appropriate adjuvant therapy option for patients with stage II disease without high-risk features. - Patients with stage II disease that is MSS/pMMR and at high risk for systemic recurrence, defined as those with poor prognostic features, including T4 tumors (stage IIB/IIC); poorly differentiated/undifferentiated histology; lymphovascular invasion; PNI; tumor budding; bowel obstruction; lesions with localized perforation or close, indeterminate, or positive margins; or inadequately sampled nodes (<12 lymph nodes), can be considered for 6 months of adjuvant chemotherapy with 5-FU/LV, capecitabine, or FOLFOX, or 3 months of adjuvant chemotherapy with CAPEOX (capecitabine and oxaliplatin). 123,303 Observation without adjuvant therapy is also an option in this population. The factors in decision-making for stage II adjuvant therapy are discussed in more detail below. - For patients with low-risk (T1–3, N1) stage III disease, the preferred adjuvant treatment options are 3 months of CAPEOX³⁰⁴⁻³⁰⁶ or 3 to 6 months of FOLFOX.^{300-302,306} Other treatment options include 6 months of single-agent capecitabine³⁰⁷ or 5-FU/LV in patients for whom oxaliplatin therapy is believed to be inappropriate.³⁰⁸⁻³¹¹ - For patients with high-risk (T4, N1–2 or any T, N2) stage III disease, the preferred adjuvant treatment options are 6 months of FOLFOX³⁰⁰⁻³⁰² or 3 to 6 months of CAPEOX.³⁰⁴⁻³⁰⁶ Other treatment options include 6 months of single-agent capecitabine³⁰⁷ or 5-FU/LV in patients for whom oxaliplatin therapy is believed to be inappropriate.³⁰⁸⁻³¹¹ Population and institutional studies have shown that patients with resected colon cancer treated with adjuvant therapy have a survival advantage over those not treated with adjuvant therapy. For example, patients from the National Cancer Database with stage III or high-risk stage II disease treated according to these NCCN Guidelines for Colon Cancer had a survival advantage over patients whose treatment did not adhere to these guidelines. A retrospective cohort study of 852 patients with any stage of colon or rectal cancer treated at Memorial University Medical Center in Savannah, Georgia similarly found that concordance with the recommendations in these NCCN Guidelines for Colon Cancer resulted in a lower risk of death. #### Endpoints for Adjuvant Chemotherapy Clinical Trials The Adjuvant Colon Cancer End Points (ACCENT) collaborative group evaluated the appropriateness of various endpoints for adjuvant chemotherapy trials in colon cancer. Results of an analysis of individual patient data from 20,898 patients in 18 randomized colon adjuvant clinical trials by the ACCENT group suggested that DFS after 2 and 3 years follow-up are appropriate endpoints for clinical trials involving treatment of colon cancer with 5-FU-based chemotherapy in the adjuvant setting. 315 An update of this analysis showed that most relapses occur within 2 years after surgery, and that recurrence rates were less than 1.5% per year and less than 0.5% per year after 5 and 8 years, respectively. 316 More recently, however, a further update of the data suggested that the association between 2- or 3-year DFS and 5-year OS was reduced when patient survival after recurrence was hypothetically prolonged to match the current time to survival from recurrence seen with modern combination therapies (2 years), and that more than 5 years may now be required to evaluate the effect of adjuvant therapies on OS.317 Further confirmation of this result comes from a new analysis by the ACCENT group of data from 12,676 patients undergoing combination therapies from six trials.³¹⁸ This study determined that 2- and 3-year DFS correlated with 5- and 6-year OS in patients with stage III disease but not in those with stage II disease. In all patients, the correlation of DFS to OS was strongest at 6-year follow-up, suggesting that at least 6 years are required for adequate assessment of OS in modern adjuvant colon cancer trials.³¹⁸ #### Adjuvant Chemotherapy in Stage II Disease The impact of adjuvant chemotherapy for patients with stage II colon cancer has been addressed in several clinical trials and practice-based studies. 123,300-303 Results from a 2015 meta-analysis of 25 high-quality studies showed that 5-year DFS in patients with stage II colon cancer who did not receive adjuvant therapy was 81.4% (95% CI, 75.4-87.4), whereas it was 79.3% (95% CI, 75.6-83.1) for patients with stage II colon cancer treated with adjuvant chemotherapy.³¹⁹ On the other hand, for patients with stage III colon cancer, the 5-year DFS was 49.0% (95% CI, 23.2-74.8) and 63.6% (95% CI, 59.3-67.9) in those treated without and with adjuvant chemotherapy, respectively. These results suggest that the benefit of adjuvant therapy is greater in patients at higher risk because of nodal status. In contrast to results from most other trials, the QUASAR trial indicated a small but statistically significant survival benefit for patients with stage II disease treated with 5-FU/LV compared to patients not receiving adjuvant therapy (RR of recurrence at 2 years, 0.71; 95% CI, 0.54-0.92; P = .01). 320 In this trial, however, approximately 64% of patients had fewer than 12 lymph nodes sampled, and thus actually may have been patients with higher risk disease who were more likely to benefit from adjuvant therapy.321 The benefit of oxaliplatin in adjuvant therapy for patients with stage II colon cancer has also been addressed. Results from a post-hoc exploratory analysis of the MOSAIC trial did not show a significant DFS benefit of FOLFOX over 5-FU/LV for patients with stage II disease at a follow-up of 6 years (HR, 0.84; 95% CI, 0.62-1.14; P=.258). 322 After longer follow-up, no difference in 10-year OS was observed in the stage II subpopulation (79.5% vs. 78.4%; HR, 1.00; P = .98). 302 In addition, patients with high-risk stage II disease (ie, disease characterized by at least one of the following: T4 tumor; tumor perforation; bowel obstruction; poorly differentiated tumor; venous invasion; <10 lymph nodes examined) receiving FOLFOX did not have improved DFS compared with those receiving infusional 5-FU/LV (HR, 0.72; 95% CI, 0.50–1.02; P = .063). Furthermore, no OS benefit was seen in the stage II population overall or in the stage II population with high-risk features. Similar results were seen in the C-07 trial, which compared FLOX to 5-FU/LV in patients with stage II and III disease. 323 Results of a large population-based study also support the lack of benefit of the addition of oxaliplatin to adjuvant regimens for patients with stage II colon cancer. 324 Clinical trial results are supported by data from the community setting. Using the SEER databases, a 2002 analysis of outcomes of patients with stage II disease based on whether or not they had received adjuvant chemotherapy showed no statistically significant difference in 5-year OS between the groups (78% vs. 75%, respectively), with an HR for survival of 0.91 (95% CI, 0.77–1.09) when patients receiving adjuvant treatment were compared with patients who had not received adjuvant treatment. In contrast, a 2016 analysis of 153,110 patients with stage II colon cancer from the National Cancer Database found that adjuvant treatment was associated with improved survival (HR, 0.76; P < .001) even after adjustment for comorbidity and unplanned hospital readmissions. Results of another population-level analysis from the Netherlands published in 2016 suggest that the benefit of adjuvant therapy in patients with stage II colon cancer may be limited to those with pT4 tumors. Decision-making regarding the use of adjuvant therapy for patients with stage II
disease should incorporate patient/physician discussions individualized for the patient, and should include explanations of the specific characteristics of the disease and its prognosis and the evidence related to the efficacy and possible toxicities associated with treatment, centering on patient choice. 303,327,328 Observation and participation in a clinical trial are options that should be considered. Patients with averagerisk stage II colon cancer have a very good prognosis, so the possible benefit of adjuvant therapy is small. Patients with disease with high-risk features, on the other hand, traditionally have been considered more likely to benefit from adjuvant chemotherapy. However, the current definition of high-risk stage II colon cancer is clearly inadequate, because many patients with disease with high-risk features do not have a recurrence while some patients with disease deemed to be average-risk do. 329 Furthermore, no data point to features that are predictive of benefit from adjuvant chemotherapy, and no data correlate risk features and selection of chemotherapy in patients with high-risk stage II disease. Overall, the NCCN Panel supports the conclusion of a 2022 ASCO Panel and believes that it is reasonable to accept the relative benefit of adjuvant therapy in stage III disease as indirect evidence of benefit for stage II disease, especially for those with high-risk features. Additional information that may influence adjuvant therapy decisions for stage II and/or stage III disease (MSI, multigene assays, and the influence of patient age) is discussed below. Research into additional possible predictive markers may allow for more informed decision-making in the future. 330,331 #### Microsatellite Instability MSI is an important piece of information to consider when deciding whether to use adjuvant chemotherapy in patients with stage II disease. Mutation of MMR genes or modifications of these genes (eg, methylation) can result in MMR protein deficiency and MSI (see *Risk Assessment*, above).³³² Tumors showing the presence of MSI are classified as either MSI-H or MSI-Low (MSI-L), depending on the extent of instability in the markers tested, whereas tumors without this characteristic are classified as MSS.³³³ Patients with tumors determined to have dMMR status are biologically the same population as those with MSI-H status. Germline mutations in the MMR genes *MLH1*, *MSH2*, *MSH6*, and/or *PMS2* or *EpCAM* are found in individuals with Lynch syndrome, which is responsible for 2% to 4% of colon cancer cases. ^{13,14,18,19} Somatic MMR defects have been reported to occur in approximately 19% of colorectal tumors, ³³⁴ whereas others have reported somatic hypermethylation of the *MLH1* gene promoter, which is associated with *MLH1* gene inactivation, in as many as 52% of colon tumors. ³³⁵ Data from the PETACC-3 trial showed that tumor specimens characterized as MSI-H are more common in stage II disease than in stage III disease (22% vs. 12%, respectively; P < .0001). In another large study, the percentage of stage IV tumors characterized as MSI-H was only 3.5%.337 These results suggest that MSI-H (ie, dMMR) tumors have a decreased likelihood to metastasize. In fact, substantial evidence shows that in patients with stage II disease, a deficiency in MMR protein expression or MSI-H tumor status is a prognostic marker of a more favorable outcome. In contrast, the favorable impact of dMMR on outcomes seems to be more limited in stage III colon cancer and may vary with primary tumor location. 338.341 Some of these same studies also show that a deficiency in MMR protein expression or MSI-H tumor status may be a predictive marker of decreased benefit and possibly a detrimental impact from adjuvant therapy with a fluoropyrimidine alone in patients with stage II disease. 339,340,342 A retrospective study involving long-term follow-up of patients with stage II and III disease evaluated according to MSI tumor status showed that those characterized as MSI-L or MSS had improved outcomes with 5-FU adjuvant therapy. However, patients with tumors characterized as MSI-H did not show a statistically significant benefit from 5-FU after surgery, instead exhibiting a lower 5-year survival rate than those undergoing surgery alone.³³⁹ Similarly, results from another retrospective study of pooled data from adjuvant trials by Sargent et al³⁴⁰ showed that in tumors characterized as dMMR, adjuvant 5-FU chemotherapy seemed to be detrimental in patients with stage II disease, but not in those with stage III disease. In contrast to the findings of Sargent et al,³⁴⁰ a study of 1913 patients with stage II CRC from the QUASAR study, half of whom received adjuvant chemotherapy, showed that although dMMR was prognostic (the recurrence rate of dMMR tumors was 11% vs. 26% for pMMR tumors), it did not predict benefit or detrimental impact of chemotherapy.³²¹ A study of patients in the CALGB 9581 and 89803 trials came to a similar conclusion.³⁴³ MMR status was prognostic but not predictive of benefit or detrimental impact of adjuvant therapy (irinotecan plus bolus 5-FU/LV [IFL regimen]) in patients with stage II colon cancer. The panel recommends universal MMR or MSI testing for all patients with a personal history of colon or rectal cancer to identify individuals with Lynch syndrome (see *Lynch Syndrome*, above), to inform use of immunotherapy in patients with metastatic disease (see *Biomarkers for Systemic Therapy*, below), and to inform decisions for patients with stage II disease. Patients with stage II MSI-H tumors may have a good prognosis and do not benefit from 5-FU adjuvant therapy, and adjuvant therapy should not be given to patients with low-risk stage II MSI-H tumors. It should be noted that poorly differentiated histology is not considered a high-risk feature for patients with stage II disease whose tumors are MSI-H. # Multigene Assays, Immunoscore, and Circulating Tumor DNA Several assays have been developed in hopes of providing prognostic and predictive information to aid in decisions regarding adjuvant therapy in patients with stage II or III colon cancer. Oncotype DX colon cancer assay quantifies the expression of seven recurrence-risk genes and five reference genes as a prognostic classifier of low, intermediate, or high likelihood of recurrence.³⁴⁴ Clinical validation in patients with stage II and III colon cancer from QUASAR³⁴⁵ and National Surgical Adjuvant Breast and Bowel Project (NSABP) C-07³⁴⁶ trials showed that recurrence scores are prognostic for recurrence, DFS, and OS in stage II and III colon cancer, but are not predictive of benefit to adjuvant therapy. For the low, intermediate, and high recurrence risk groups, recurrence at 3 years was 12%, 18%, and 22%, respectively.345 Multivariate analysis showed that recurrence scores were related to recurrence independently from TNM staging, MMR status, tumor grade, and number of nodes assessed in both stage II and III disease. Similar results were found in a prospectively designed study that tested the correlation between recurrence score using the Oncotype DX colon cancer assay and the risk of recurrence in patients from the CALGB 9581 trial (stage II disease).347 An additional prospectively designed clinical validation study in patients from the NSABP C-07 trial found that the assay results correlated with recurrence, DFS, and OS.346 This study also found some evidence that patients with higher recurrence scores may derive more absolute benefit from oxaliplatin, although the authors noted that the recurrence score is not predictive of oxaliplatin efficacy in that it does not identify patients who will or will not benefit from oxaliplatin treatment. An additional study validated the recurrence score in patients with stage II/III colon cancer treated with surgery alone.348 ColoPrint quantifies the expression of 18 genes as a prognostic classifier of low versus high recurrence risk. 349 In a set of 206 patients with stage I–III CRC, the 5-year relapse-free survival (RFS) rates were 87.6% (95% CI, 81.5–93.7) and 67.2% (95% CI, 55.4–79.0) for those classified as low and high risk, respectively. In patients with stage II disease in particular, the HR for recurrence between the high and low groups was 3.34 (P = .017). 349 This assay was further validated in a pooled analysis of 416 patients with stage II disease, 301 of whom were assessed as a T3/MSS subset. 350 In the T3/MSS subset, patients classified as low risk and high risk had a 5-year risk of relapse (survival until first event of recurrence or death from cancer) of 22.4% and 9.9%, respectively (HR, 2.41; P = .005). As with the Oncotype DX colon cancer assay, recurrence risk determined by ColoPrint is independent of other risk factors, including T stage, perforation, number of nodes assessed, and tumor grade. This assay is being further validated for its ability to predict 3-year relapse rates in patients with stage II colon cancer in a prospective trial (NCT00903565). ColDx is a microarray-based multigene assay that uses 634 probes to identify patients with stage II colon cancer at high risk of recurrence. In a 144-sample independent validation set, the HR for identification of patients with high-risk disease was 2.53 (95% CI, 1.54–4.15; P < .001) for recurrence and 2.21 (95% CI, 1.22–3.97; P = .0084) for cancer-related death. A cohort study of patients in the C9581 trial found that patients with stage II colon cancer identified as high risk by ColDx had a shorter recurrence-free interval than those identified as low-risk (multivariable HR, 2.13; 95% CI, 1.3–3.5; P < .01). Similar to the other assays described here, the recurrence risk determined by ColDx is independent of other risk factors. An international study led by the Society for Immunotherapy of Cancer aimed to validate Immunoscore, a scoring system reported as percentiles of CD3+ and CD8+ immune cell densities in prespecified regions of the tumor
sample by dedicated software, for the assay's prognostic value in patients with stage III colon cancer as well as its predictive value for efficacy of adjuvant chemotherapy in these patients. This study reported that patients with the highest Immunoscore showed the lowest risk of recurrence; 3-year recurrence-free survival rates were 56.9%, 65.9% and 76.4% for low, medium, and high Immunoscore (HR [high vs. low], 0.48; 95% CI, 0.32-0.71; P=.0003). A high Immunoscore also correlated with prolonged time to recurrence, OS, and DFS (all P < .001). The benefit of adjuvant chemotherapy was also associated with a high Immunoscore for both high-risk (P = .0015) and low-risk (P = .0011) tumors. The same was not true for tumors with a low Immunoscore (P > .12). Post-surgical circulating tumor DNA (ctDNA) has also been studied as a marker for an elevated risk of recurrence in stage I-III colon cancer. A prospective, multicenter study of 130 patients with stage I-III colon cancer detected ctDNA by multiplex, PCR-based next-generation sequencing (NGS).354 Thirty days after surgery, patients with positive ctDNA assays were seven times more likely to experience disease relapse than patients with negative ctDNA assays (HR, 7.2; 95% CI, 2.7–19.0; P < .001). Likewise, after adjuvant chemotherapy, patients with ctDNA-positive assays were 17 times more likely to have disease relapse (HR, 17.5; 95% CI, 5.4-56.5; P < .001). Another prospective study of 150 patients with localized colon cancer detected ctDNA with NGS following surgery. 355 In this study, detection of ctDNA was also associated with poorer DFS (HR, 17.56; $\log \operatorname{rank} P = .0014$ for ctDNA post-surgery and HR, 11.33; $\log \operatorname{rank} P = .0014$ P = .0001 for ctDNA in serial plasma samples during follow-up). Other studies have reported similar results. 356,357 In the DYNAMIC study, 455 patients with stage II colon cancer were randomized to either ctDNAguided management or standard management.³⁵⁸ After a median follow-up of 37 months, a lower percentage of patients in the ctDNA-guided management group received adjuvant chemotherapy compared to the standard management group (15% vs. 28%; RR, 1.82; 95% CI, 1.25-2.65). Two-year recurrence-free survival in the ctDNA-guided management group was noninferior to the standard management group (93.5% vs. 92.4%). The GALAXY observational arm from the ongoing CIRCULATE-Japan study has analyzed presurgical and postsurgical ctDNA in 1039 patients with stage II–IV resectable CRC.³⁵⁹ With a median follow-up of 16.74 months in this cohort, postsurgical ctDNA positivity at 4 weeks after surgery was associated with a higher recurrence risk (HR, 10.0; P < .0001) and identified patients with stage II or III CRC who derived a benefit from adjuvant chemotherapy (HR, 6.59; P < .0001). While these results support ctDNA as a prognostic marker, details such as the timing of the assay and the value of quantification of ctDNA are the subject of ongoing studies. Most importantly, the early detection of recurrent disease through ctDNA testing is not without drawbacks. A positive result in the absence of evident disease is only helpful if the patient has therapeutic options that have a reasonable chance to eradicate the disease. Early knowledge of cancer recurrence in the absence of effective interventions could cause significant distress to a patient. In summary, the information from these tests can further inform the risk of recurrence over other risk factors, but the panel questions the value added. Furthermore, evidence of predictive value in terms of the potential benefit of chemotherapy is lacking. Therefore, the panel believes that there are insufficient data to recommend the use of multigene assays, Immunoscore, or post-surgical ctDNA to estimate risk of recurrence or determine adjuvant therapy. ESMO has released similar recommendations regarding these assays, stating that their role in predicting chemotherapy benefit is uncertain.³⁶⁰ The NCCN Panel encourages enrollment in clinical trials to help with the generation of additional data on these assays. #### Adjuvant Chemotherapy in Older Patients Adjuvant chemotherapy usage declines with the age of the patient.³⁶¹ Questions regarding the safety and efficacy of chemotherapy in older patients have been difficult to answer, because older patients are underrepresented in clinical trials. Some data speaking to these questions have been reviewed.³⁶²⁻³⁶⁴ Population studies have found that adjuvant therapy is beneficial in older patients. A retrospective analysis of 7263 patients from the linked SEER-Medicare Databases found a survival benefit for the use of 5-FU/LV in patients ≥65 years with stage III disease (HR, 0.70; *P* < .001).³⁶⁵ Another analysis of 5489 patients aged ≥75 years diagnosed with stage III colon cancer between 2004 and 2007 from four datasets, including the SEER-Medicare Databases and the NCCN Outcomes Database, showed a survival benefit for adjuvant chemotherapy in this population (HR, 0.60; 95% CI, 0.53–0.68).³⁶¹ This study also looked specifically at the benefit of the addition of oxaliplatin to adjuvant therapy in these patients ≥75 years with stage III disease, and found only a small, non-significant benefit. Analysis of almost 12,000 patients from the ACCENT database also found a reduced benefit to the addition of oxaliplatin to fluoropyrimidines in the adjuvant setting in patients ≥70 years.³⁶⁶ Subset analyses of major adjuvant therapy trials also show a lack of benefit to the addition of oxaliplatin in older patients. Subset analysis of the NSABP C-07 trial showed that the addition of oxaliplatin to 5-FU/LV gave no survival benefit in patients ≥70 years with stage II or III colon cancer (n = 396), with a trend towards decreased survival (HR, 1.18; 95% CI, 0.86–1.62).³²³ Similarly, in a subset analysis of the MOSAIC trial, 315 patients aged 70 to 75 years with stage II or III colon cancer derived no benefit from the addition of oxaliplatin (OS HR, 1.10; 95% CI, 0.73–1.65).³²² However, a pooled analysis of individual patient data from the NSABP C-08, XELOXA, X-ACT, and AVANT trials found that DFS (HR, 0.77; 95% CI, 0.62–0.95; *P* = .014) and OS (HR, 0.78; 95% CI, 0.61–0.99; *P* = .045) were improved with adjuvant CAPEOX or FOLFOX over 5-FU/LV in patients ≥70 years.³⁶⁷ Likewise, a subgroup analysis of the phase III TOSCA trial (part of the IDEA collaboration) found that once the multivariable analysis was corrected for sex, performance status, tumor site, grade, treatment, treatment duration, and dose reduction, there was no significant difference in time to tumor recurrence between patients ≥70 years compared to those <70 years when treated with oxaliplatin-based adjuvant therapy (HR, 1.19; 95% CI, 0.98–1.44; P = .082), although worse prognostic factors and a higher rate of treatment discontinuation had a negative impact on efficacy measures of DFS and OS in the population \geq 70 years of age.³⁶⁸ As for the risks of adjuvant therapy in older patients, a pooled analysis of 37,568 patients from adjuvant trials in the ACCENT database found that the likelihood of early mortality after adjuvant treatment increased with age in a nonlinear fashion (P < .001). For instance, the ORs for 30-day mortality for patients aged 70 and 80 years compared to patients aged 60 years were 2.58 (95% CI, 1.88-3.54) and 8.61 (95% CI, 5.34-13.9), respectively. Patients aged 50 years, on the other hand, had a corresponding OR of 0.72 (95% CI, 0.47-1.10). However, the absolute risk of early mortality was very small, even for older patients (30-day mortality for 80 year olds was 1.8%). Overall, the benefit and toxicities of 5-FU/LV as adjuvant therapy seem to be similar in older and younger patients. However, the panel cautions that a benefit for the addition of oxaliplatin to 5-FU/LV in patients ≥70 years has not been proven in stage II or stage III colon cancer. #### Timing of Adjuvant Therapy A systematic review and meta-analysis of 10 studies involving more than 15,000 patients examined the effect of timing of adjuvant therapy after resection. Results of this analysis showed that each 4-week delay in chemotherapy results in a 14% decrease in OS, indicating that adjuvant therapy should be administered as soon as the patient is medically able. These results are consistent with other similar analyses. In addition, a retrospective study of 7794 patients with stage II or III colon cancer from the National Cancer Database found that a delay of more than 6 weeks between surgery and adjuvant therapy reduced survival after adjustment for clinical-, tumor-, and treatment-related factors. Another retrospective study of 6620 patients with stage III colon cancer from the Netherlands Cancer Registry also found that starting adjuvant therapy after 8 weeks beyond resection was associated with worse survival. However, some critics have pointed out that this type of analysis is biased by confounding factors such as comorbidities, which are likely to be higher in patients with a longer delay before initiation of chemotherapy. In fact, the registry study found that patients who started therapy after 8 weeks were more likely to be >65 years, have had an emergency resection, and/or have a prolonged postoperative admission. #### Leucovorin Shortage A shortage of LV has existed in the United States. No specific data are available to guide management under these circumstances, and all proposed strategies are empiric. The panel recommends several possible options to help alleviate the problems associated with this shortage. One is the use of levoleucovorin, which is commonly used in Europe. A dose of 200 mg/m² of levoleucovorin is equivalent to 400 mg/m² of standard LV. Use of levoleucovorin should only be considered during times of LV shortage since levoleucovorin is substantially more expensive than LV. Another option is for practices or institutions to use lower doses of LV for all doses in all
patients, because the panel feels that lower doses are likely to be as efficacious as higher doses, based on several studies. The QUASAR study found that 175 mg of LV was associated with similar survival and 3-year recurrence rates as 25 mg of LV when given with bolus 5-FU as adjuvant therapy to patients after R0 resections for CRC. 374 Another study showed no difference in response rate or survival in patients with mCRC receiving bolus 5-FU with either high-dose (500 mg/m²) or low-dose (20 mg/m²) LV. 375 Furthermore, the Mayo Clinic and North Central Cancer Treatment Group (NCCTG) determined that no therapeutic difference was seen between the use of high-dose (200 mg/m²) or low-dose (20 mg/m²) LV with bolus 5-FU in the treatment of advanced CRC, although the 5-FU doses were different in the treatment arms.³⁷⁶ Finally, if none of the above options is available, treatment without LV would be reasonable. For patients who tolerate this without grade II or higher toxicity, a modest increase in 5-FU dose (in the range of 10%) may be considered. #### Adjuvant FOLFOX and Infusional 5-FU/LV The European MOSAIC trial compared the efficacy of FOLFOX and 5-FU/LV in the adjuvant setting in 2246 patients with completely resected stage II and III colon cancer. Although this initial trial was performed with FOLFOX4, mFOLFOX6 has been the control arm for all recent and current National Cancer Institute (NCI) adjuvant studies for CRC, and the panel believes that mFOLFOX6 is the preferred FOLFOX regimen for adjuvant and metastatic treatments. Results of this study have been reported with median follow-ups of up to 9.5 years. 300-302 For patients with stage III disease, DFS at 5 years was 58.9% in the 5-FU/LV arm and 66.4% in the FOLFOX arm (P = .005), and 10-year OS of patients with stage III disease receiving FOLFOX was statistically significantly increased compared with those receiving 5-FU/LV (67.1% vs. 59.0%; HR, 0.80; P = .016). 302 Although the incidence of grade 3 peripheral sensory neuropathy was 12.4% for patients receiving FOLFOX and only 0.2% for patients receiving 5-FU/LV, long-term safety results showed a gradual recovery for most of these patients. However, neuropathy was present in 15.4% of examined patients at 4 years (mostly grade 1), suggesting that oxaliplatin-induced neuropathy may not be completely reversible in some patients.³⁰¹ An analysis of five observational data sources, including the SEER-Medicare and NCCN Outcomes Databases, showed that the addition of oxaliplatin to 5-FU/LV gave a survival advantage to the general stage III colon cancer population treated in the community.³⁷⁷ Another population-based analysis found that the harms of oxaliplatin in the medicare population with stage III colon cancer were reasonable, even in patients ≥75 years.³⁷⁸ In addition, a pooled analysis of individual patient data from four RCTs revealed that the addition of oxaliplatin to capecitabine or 5-FU/LV improved outcomes in patients with stage III colon cancer.³⁷⁹ Furthermore, analysis of data from 12,233 patients in the ACCENT database of adjuvant colon cancer trials supports the benefit of oxaliplatin in patients with stage III disease.³⁸⁰ #### Adjuvant Capecitabine and CAPEOX Single-agent oral capecitabine as adjuvant therapy for patients with stage III colon cancer was shown to be at least equivalent to bolus 5-FU/LV (Mayo Clinic regimen) with respect to DFS and OS, with respective HRs of 0.87 (95% CI, 0.75–1.00; P < .001) and 0.84 (95% CI, 0.69–1.01; P = .07) in the X-ACT trial.³⁰⁷ Final results of this trial were subsequently reported.³⁸¹ After a median follow-up of 6.9 years, the equivalencies in DFS and OS were maintained in all subgroups, including those \geq 70 years. Capecitabine was also assessed as adjuvant therapy for stage III colon cancer in combination with oxaliplatin (CAPEOX) in the NO16968 trial and showed an improved 3-year DFS rate compared with bolus 5-FU/LV (66.5% vs. 70.9%). 304,305 Final results of this trial showed that OS at 7 years was improved in the CAPEOX arm compared with the 5-FU/LV arm (73% vs. 67%; HR, 0.83; 95% CI, 0.70–0.99; P = .04). 382 Another phase III trial compared CAPEOX to mFOLFOX6 in 408 patients with stage III or high-risk stage II colon cancer. 383 No significant differences were seen in 3-year DFS and 3-year OS. In addition, a pooled analysis of individual patient data from four RCTs revealed that the addition of oxaliplatin to capecitabine or 5-FU/LV improved outcomes in patients with stage III colon cancer. 379 #### **Duration of Adjuvant Therapy** The IDEA collaboration investigated whether limiting adjuvant treatment to 3 months of FOLFOX or CAPEOX—which would markedly decrease the incidence of neuropathy—would compromise oncologic outcomes. IDEA included 12,834 patients in an international effort that pooled data from six concurrently conducted, randomized phase III trials to assess the noninferiority of 3 months compared with 6 months of adjuvant FOLFOX or CAPEOX in patients with stage III colon cancer.³⁰⁶ The median follow-up was 39 months. Importantly, grade 3+ neurotoxicity rates were lower in the 3 months versus 6 months treatment arms (3% vs. 16% for FOLFOX; 3% vs. 9% for CAPEOX; P < .0001), as were grade 2 neurotoxicity rates (14% vs. 32% for FOLFOX; 12% vs. 36% for CAPEOX; P < .0001). Grade 2 and grade 3/4 diarrhea rates were also lower with the shorter duration of therapy (P < .0001 for FOLFOX; P = .01 for CAPEOX). The primary endpoint of 3-year DFS did not meet the prespecified cutoff for noninferiority in the overall population, despite the small absolute difference of 0.9% (74.6% for 3 months vs. 75.5% for 6 months; HR, 1.07; 95% CI, 1.00–1.15), which is of questionable clinical significance. However, noninferiority was observed within certain subgroups. Specifically, in the low-risk (T1–3, N1) subgroup, the DFS for 3 months of CAPEOX was noninferior to 6 months of CAPEOX (HR, 0.85; 95% CI, 0.71–1.01), whereas noninferiority could not be proven for 3 months versus 6 months of FOLFOX (HR, 1.10; 95% CI, 0.96–1.26). In the high-risk (T4 and/or N2) subgroup, DFS for 3 months of FOLFOX was inferior to 6 months of FOLFOX (HR, 1.20; 95% CI, 1.07–1.35), whereas noninferiority could not be proven for the 3- to 6-month comparison with CAPEOX (HR, 1.02; 95% CI, 0.89–1.17). Results of the final analysis of IDEA were reported after an overall median survival follow-up of 72.3 months. In the final analysis, 5-year OS was 82.4% for 3 months of therapy compared to 82.8% for 6 months (HR, 1.02; 95% CI, 0.95–1.11; P = .058). The HR for 5-year OS was 0.96 for CAPEOX (3 vs. 6 months) and 1.07 for FOLFOX (3 vs. 6 months). Likewise, long-term DFS HRs were 0.98 for CAPEOX (3 vs. 6 months) and 1.16 for FOLFOX (3 vs. 6 months). The authors of this study concluded that, while the differences in OS did not meet the statistical assumptions for noninferiority, the overall 0.4% difference in 5-year OS should be placed in clinical context, especially considering the marked reduction in toxicity associated with the shorter duration of therapy. A pooled analysis of patients with high-risk stage II colon cancer in the IDEA collaboration failed to show noninferiority of 3 months compared to 6 months of adjuvant treatment based on 5-year DFS (80.7% for 3 months vs. 83.9% for 6 months; HR, 1.17; 80% CI, 1.05–1.31). Similar to stage III, the duration of therapy was associated with a small, not statistically significant, difference in 5-year DFS between 3 and 6 months of CAPEOX (HR, 1.02; 80% CI, 0.88-1.17).385 Two of the published trials within the IDEA collaboration reported similar results for high-risk stage II disease. For the TOSCA trial, 5-year RFS was found to be similar between 3 and 6 months of CAPEOX, while the difference was more pronounced between 3 and 6 months of FOLFOX (8.56% difference favoring 6 months of FOLFOX).386 The OS analysis of TOSCA at a median follow-up of 7 years reported a HR of 1.09 for OS in the 3- versus 6-month arms (95% CI, 0.93–1.26; P for superiority = .288).387 In the Hellenic Oncology Research Group (HORG)-IDEA trial, 3-year DFS was 76.7% for 3 months versus 79.3% for 6 months of FOLFOX (HR, 1.21; 95% CI, 0.54–2.70) and 85.4% for 3 months versus 83.8% for 6 months of CAPEOX (HR, 0.99; 95% CI, 0.59 - 1.67).388 ACHIEVE was another phase III trial that investigated similar questions regarding duration of adjuvant therapy for 1313 patients of Asian descent with stage III colon cancer. The results of ACHIEVE were consistent with IDEA, finding that the incidence of long-lasting peripheral neuropathy was significantly lower with 3 months of adjuvant therapy compared to 6 months (9.7% vs. 24.3% after 3 years; P < .001). DFS rates were similar between the 3- and 6-month arms (HR, 0.95; 95% CI, 0.76–1.20). ACHIEVE-2 was a randomized phase III trial comparing adjuvant chemotherapy duration of 3 versus 6 months for 525 patients with high- risk stage II colon cancer. Similar to the other studies, the 3-year DFS rate with CAPEOX was 88.2% in the 3-month arm and 88.4% in the 6-month arm, with a lower discontinuation rate (15% vs. 35%; P < .0001) and lower rate of grade 2 or higher peripheral sensory neuropathy (16% vs. 43%; P < .0001) for 3 months of CAPEOX compared to 6 months. Based on these data, 3 months of CAPEOX or 3 to 6 months of FOLFOX are listed in the guidelines as preferred adjuvant therapy options for patients with low-risk stage III colon cancer. Three to 6 months of CAPEOX or 6 months of FOLFOX are listed as preferred adjuvant therapy options for patients with high-risk stage III colon cancer. Six months of infusional 5-FU/LV or single-agent capecitabine are included as other adjuvant therapy options for low- or high-risk stage III colon cancer. For stage II colon cancer at high risk for systemic recurrence, the recommended options for adjuvant treatment are 6 months of capecitabine, 5-FU/LV, or FOLFOX or 3 months of CAPEOX. Observation may also
be an appropriate option for high-risk stage II disease. In this population, no adjuvant treatment option is preferred over the others. #### Adjuvant Regimens Not Recommended Other adjuvant regimens studied for the treatment of early-stage colon cancer include 5-FU-based therapies incorporating irinotecan. The CALGB 89803 trial evaluated the IFL regimen versus 5-FU/LV alone in stage III colon cancer.³⁹¹ No improvement in either OS (*P* = .74) or DFS (*P* = .84) was observed for patients receiving IFL compared with those receiving 5-FU/LV. However, IFL was associated with a greater degree of neutropenia, neutropenic fever, and death.^{391,392} Similar results were observed in a randomized phase III trial comparing bolus 5-FU/LV with the IFL regimen in stage II/III colon cancer.³⁹³ In addition, FOLFIRI (infusional 5-FU/LV/irinotecan) has not been shown to be superior to 5-FU/LV in the adjuvant setting.^{394,395} Thus, data do not support the use of irinotecan-containing regimens in the treatment of stage II or III colon cancer. In the NSABP C-08 trial comparing 6 months of mFOLFOX6 with 6 months of mFOLFOX6 with bevacizumab plus an additional 6 months of bevacizumab alone in patients with stage II or III colon cancer, no statistically significant benefit in 3-year DFS was seen with the addition of bevacizumab (HR, 0.89; 95% CI, 0.76–1.04; P = .15). Similar results were seen after a median follow-up of 5 years. The results of the phase III AVANT trial evaluating bevacizumab in the adjuvant setting in a similar protocol also failed to show a benefit associated with bevacizumab in the adjuvant treatment of stage II or III CRC, and in fact showed a trend toward a detrimental effect to the addition of bevacizumab. Furthermore, results of the open-label, randomized phase III QUASAR 2 trial showed that bevacizumab had no benefit in the adjuvant colorectal setting when added to capecitabine. Therefore, bevacizumab has no role in the adjuvant treatment of stage II or III colon cancer. The NCCTG Intergroup phase III trial N0147 assessed the addition of cetuximab to FOLFOX in the adjuvant treatment of stage III colon cancer. In patients with wild-type or mutant KRAS tumors, cetuximab provided no added benefit and was associated with increases in grade 3/4 AEs. 401 In addition, all subsets of patients treated with cetuximab experienced increases in grade 3/4 AEs. The open-label, randomized, phase III PETACC-8 trial also compared FOLFOX with and without cetuximab. 402 Analysis of the wild-type KRAS exon 2 subset found that DFS was similar in both arms (HR, 0.99; 95% CI, 0.76–1.28), while AEs (ie, rash, diarrhea, mucositis, infusion-related reactions) were more common in the cetuximab group. However, a more recent analysis of PETACC-8 that looked at mutations in KRAS, NRAS, and BRAF found that patients with RAS wildtype/BRAF wild-type tumors had a non-significant trend towards improved DFS (HR, 0.76) for the addition of cetuximab to FOLFOX.⁴⁰³ Therefore, cetuximab also has no role in the adjuvant treatment of colon cancer at this time, but further trials may define a subset of patients who might benefit from cetuximab in the adjuvant setting. A randomized phase III trial (NSABP C-07) compared the efficacy of FLOX with that of bolus 5-FU/LV in 2407 patients with stage II or III colon cancer. While FLOX showed significantly higher rates of 4- and 7-year DFS, 323,404 no statistically significant differences in OS or colon-cancer—specific mortality were observed when the arms were compared. Furthermore, survival after disease recurrence was significantly shorter in the group receiving oxaliplatin (HR, 1.20; 95% CI, 1.00–1.43; P = .0497).323 Grade 3 neurotoxicity, diarrhea, and dehydration were higher with FLOX than with 5-FU/LV,³²³ and, when cross-study comparisons were made, the incidence of grade 3/4 diarrhea seemed to be considerably higher with FLOX than with FOLFOX. For example, rates of grade 3/4 diarrhea were 10.8% and 6.6% for patients receiving FOLFOX and infusional 5-FU/LV in the MOSAIC trial,³⁰⁰ whereas 38% and 32% of patients were reported to have grade 3/4 diarrhea in the NSABP C-07 trial when receiving FLOX and bolus 5-FU/LV.404 For these reasons, FLOX is no longer recommended as adjuvant treatment for colon cancer. #### **Perioperative Chemoradiation** Neoadjuvant or adjuvant radiation therapy (RT) delivered concurrently with fluoropyrimidine—based chemotherapy may be considered for very select patients with disease characterized as T4 tumors penetrating to a fixed structure or for patients with recurrent disease. ADD RT fields should include the tumor bed as defined by preoperative radiologic imaging and/or surgical clips. Intraoperative RT (IORT), if available, should be considered for these patients as an additional boost. Intraoperative RT (EBRT) and/or brachytherapy could be considered to a limited volume. Chemoradiation can also be given to patients with locally unresectable disease or who are medically inoperable. In such cases, surgery with or without IORT can then be considered or additional lines of systemic therapy can be given. Intensity-modulated RT (IMRT), which uses computer-assisted inverse treatment planning to focus radiation to the tumor site and potentially decrease toxicity to normal tissue, 408 or stereotactic body RT (SBRT; also called stereotactic ablative radiotherapy [SABR]) are preferred for unique clinical situations, such as reirradiation of previously treated patients with recurrent disease or anatomical situations where IMRT facilitates the delivery of recommended target volume doses while respecting accepted normal issue dose-volume constraints.⁴⁰⁹ #### **Management of Metastatic Disease** Approximately 50% to 60% of patients diagnosed with CRC develop colorectal metastases, $^{410-412}$ and 80% to 90% of these patients have unresectable metastatic liver disease. $^{411,413-416}$ Metastatic disease most frequently develops metachronously after treatment for locoregional CRC, with the liver being the most common site of involvement. 417 However, 20% to 34% of patients with CRC present with synchronous liver metastases. 416,418 Some evidence indicates that synchronous metastatic colorectal liver disease is associated with a more disseminated disease state and a worse prognosis than metastatic colorectal liver disease that develops metachronously. In a retrospective study of 155 patients who underwent hepatic resection for colorectal liver metastases, patients with synchronous liver metastases had more sites of liver involvement (P = .008) and more bilobar metastases (P = .016) than patients diagnosed with metachronous liver metastases. It has been estimated that more than half of patients who die of CRC have liver metastases at autopsy, with metastatic liver disease being the cause of death in most patients. 420 Reviews of autopsy reports of patients who died from CRC showed that the liver was the only site of metastatic disease in one-third of patients. 415 Furthermore, several studies have shown rates of 5-year survival to be low in patients with metastatic liver disease not undergoing surgery. 411,421 Certain clinicopathologic factors, such as the presence of extrahepatic metastases, the presence of more than three tumors, and a disease-free interval of less than 12 months, have been associated with a poor prognosis in patients with CRC.^{418,422-426} Contrast-enhanced ultrasound (CEUS) can be used for detection and characterization of liver lesions as a screening tool in distinct patient populations. This population includes those who cannot safely receive contrast-enhanced CT/MRI and those who have indeterminate liver lesion on CT/MRI. Ultrasound contrast agents (UCAs) have a high sensitivity for detecting small liver metastases because of their high spacial resolution and their ability to be maintained in circulation and not in the interstitial fluid. 427 Because of the UCAs short half-life (about 5 minutes), contrast injection for lesion detection needs to be done repeatedly; if a patient has many liver metastases the ultrasound could be a lengthy test. In addition, many institutions do not have this technology or personnel with the expertise to perform the CEUS and/or analyze the results. At this time CEUS can be considered in certain patient populations as a screening tool at capable institutions. Other groups, including ESMO, have established guidelines for the treatment of mCRC.⁴²⁸ The NCCN recommendations are discussed below. #### **Surgical Management of Colorectal Metastases** Studies of selected patients undergoing surgery to remove colorectal liver metastases have shown that cure is possible in this population and should be the goal for a substantial number of these patients. A11,429 Reports have shown 5-year DFS rates of approximately 20% in patients who have undergone resection of liver metastases, A23,426 and a meta-analysis reported a median 5-year survival of 38%. In addition, retrospective analyses and meta-analyses have shown that patients with solitary liver metastases have a 5-year OS rate as high as 71% following resection. Therefore, decisions relating to patient suitability, or potential suitability, and subsequent selection for metastatic colorectal surgery are critical junctures in the management of metastatic colorectal liver disease (discussed further in *Determining Resectability*).⁴³⁴ Colorectal metastatic disease sometimes occurs in the lung. 410 Most of the treatment recommendations discussed for metastatic colorectal liver disease also apply to the treatment of colorectal pulmonary metastases. 246,435,436 A series of 378 patients found that resection of pulmonary metastases resulted in 3-year recurrence-free survival of 28% and 3-year OS of 78%. 246 Combined pulmonary and hepatic resections of resectable metastatic disease have been performed in very highly selected cases, 437-441 and an analysis of patients who underwent hepatic resection
followed by subsequent pulmonary resection showed positive outcomes. 442 Evidence supporting resection of extrahepatic metastases in patients with mCRC is limited. In a retrospective analysis of patients undergoing concurrent complete resection of hepatic and extrahepatic disease, the 5-year survival rate was lower than in patients without extrahepatic disease, and virtually all patients who underwent resection of extrahepatic metastases experienced disease recurrence. However, an international analysis of 1629 patients with colorectal liver metastases showed that 16% of the 171 patients (10.4%) who underwent concurrent resection of extrahepatic and hepatic disease remained disease-free at a median follow-up of 26 months, suggesting that concurrent resection may be of significant benefit in well-selected patients (ie, those with a smaller total number of metastases). At 441 A systematic review concluded similarly that carefully selected patients might benefit from this approach. Data suggest that a surgical approach to the treatment of recurrent hepatic disease isolated to the liver can be safely undertaken. However, in a retrospective analysis, 5-year survival was shown to decrease with each subsequent curative-intent surgery, and the presence of extrahepatic disease at the time of surgery was independently associated with a poor prognosis. In a more recent retrospective analysis of 43 patients who underwent repeat hepatectomy for recurrent disease, 5-year OS and PFS rates were reported to be 73% and 22%, respectively. Ameta-analysis of 27 studies including fewer than 7200 patients found that those with longer disease-free intervals; those whose recurrences were solitary, smaller, or unilobular; and those lacking extrahepatic disease derived more benefit from repeat hepatectomy. Panel consensus is that reresection of liver or lung metastases can be considered in carefully selected patients. Patients with a resectable primary colon tumor and resectable synchronous metastases can be treated with a staged or simultaneous resection, as discussed below in *Resectable Synchronous Liver or Lung Metastases*. For patients presenting with unresectable metastases and an intact primary that is not acutely obstructed, palliative resection of the primary is rarely indicated, and systemic therapy is the preferred initial maneuver (discussed further in *Unresectable Synchronous Liver or Lung Metastases*).⁴⁵⁴ #### **Local Therapies for Metastases** The standard of care for patients with resectable metastatic disease is surgical resection. Image-guided ablation has historically been used for non-surgical patients⁴⁵⁵⁻⁴⁵⁷ but is also indicated for small metastases that can be treated with margins, in combination with surgery or alone, as long as all visible disease is treated.⁴⁵⁸ SBRT is a reasonable option for patients whose disease cannot be resected or ablated, as discussed in subsequent paragraphs.^{414,459,460} Many patients, however, are not surgical candidates and/or have disease that cannot be ablated with clear margins⁴⁵⁷ or safely treated by SBRT. In select patients with liver-only or liver-dominant metastatic disease that cannot be resected or ablated, other local, arterially directed treatment options may be offered.⁴⁶¹⁻⁴⁶³ A meta-analysis of 90 studies concluded that hepatic arterial infusion chemotherapy (HAIC), yttrium-90 microsphere radioembolization, and transcatheter arterial chemoembolization (TACE) have similar efficacy in patients with unresectable colorectal hepatic metastases. 464 Local therapies are described in more detail below. The exact role and timing of using non-extirpative local therapies in the treatment of colorectal metastases remains controversial. #### Hepatic Arterial Infusion Placement of a hepatic arterial port or implantable pump during surgical intervention for liver resection with subsequent infusion of chemotherapy directed to the liver metastases through the hepatic artery (ie, HAIC) is an option (category 2B). In a randomized study of patients who had undergone hepatic resection, administration of floxuridine with dexamethasone through HAIC and intravenous 5-FU with or without LV was shown to be superior to a similar systemic chemotherapy regimen alone with respect to 2-year survival free of hepatic disease. 415,465 The study was not powered for long-term survival, but a trend (not significant) was seen toward better long-term outcomes in the group receiving HAIC at later follow-up periods. 415,466 Several other clinical trials have shown significant improvement in response or time to hepatic disease progression when HAIC was compared with systemic chemotherapy, although most have not shown a survival benefit of HAIC.415 Results of some studies also suggest that HAIC may be useful in the conversion of disease from an unresectable to a resectable status. 467,468 Some of the uncertainties regarding patient selection for preoperative chemotherapy are also relevant to the application of HAIC.⁴²⁹ Limitations on the use of HAIC include the potential for biliary toxicity⁴¹⁵ and the requirement of specific technical expertise. Panel consensus is that HAIC should be considered selectively, and only at institutions with extensive experience in both the surgical and medical oncologic aspects of the procedure. #### Arterially Directed Embolic Therapy #### Transhepatic Arterial Chemoembolization TACE involves hepatic artery catheterization to locally deliver chemotherapy followed by arterial occlusion. A randomized trial compared the arterial delivery of irinotecan-loaded drug-eluting beads (DEBIRI) and reported an OS benefit (22 vs. 15 months; P = .031) of DEBIRI when compared to systemic FOLFIRI. A 2013 meta-analysis identified five observational studies and one randomized trial and concluded that, although DEBIRI appears to be safe and effective for patients with unresectable colorectal liver metastases, additional trials are needed. A more recent trial randomized 30 patients with colorectal liver metastases to FOLFOX/bevacizumab and 30 patients to FOLFOX/bevacizumab/DEBIRI. DEBIRI resulted in an improvement in the primary outcome measure of response rate (78% vs. 54% at 2 months; P = .02). Doxorubicin-eluting beads have also been studied; the most robust data supporting their effectiveness come from several phase II trials in hepatocellular carcinoma. 472-477 A 2013 systematic review concluded that data are not strong enough to recommend TACE for the treatment of colorectal liver metastases except as part of a clinical trial. 478 #### Radioembolization A prospective, randomized, phase III trial of 44 patients showed that radioembolization combined with chemotherapy can lengthen time to progression in patients with liver-limited mCRC following progression on initial therapy (2.1 vs. 4.5 months; P = .03). The effect on the primary endpoint of time to liver progression was more pronounced (2.1 vs. 5.5 months; P = .003). Treatment of liver metastases with yttrium-90 glass radioembolization in a prospective, multicenter, phase II study resulted in a median PFS of 2.9 months for patients with colorectal primaries who were refractory to standard treatment. 480 In the refractory setting, a CEA level greater than or equal to 90 and lymphovascular invasion at the time of primary resection were negative prognostic factors for OS.481 Additional risk factors include tumor volume and liver replacement by disease as well as albumin and bilirubin levels, performance status, and the presence of extrahepatic disease for both glass⁴⁸² and resin⁴⁸³ microspheres. Several large case series have been reported for yttrium-90 radioembolization in patients with refractory unresectable colorectal liver metastases, and the technique appears to be safe with some clinical benefit. 482,484,485 Median survival after radioembolization in the chemorefractory setting has been reported from 9 to 15.1 months. 480-485 Survival at 1 year from radioembolization of patients with heavily pretreated disease varies considerably based on the accumulation of risk factors such as extrahepatic disease, large tumor size, poor differentiation, higher CEA and alanine transaminase (ALT), and lower albumin levels.483 Results from the phase III randomized controlled SIRFLOX trial (yttrium-90 resin microspheres with FOLFOX \pm bevacizumab vs. FOLFOX \pm bevacizumab) were reported. The trial assessed the safety and efficacy of yttrium-90 radioembolization as first-line therapy in 530 patients with colorectal liver metastases. Although the primary endpoint was not met, with PFS in the FOLFOX \pm bevacizumab arm at 10.2 months versus 10.7 months in the FOLFOX/yttrium-90 arm (HR, 0.93; 95% CI, 0.77–1.12; P = .43), a prolonged liver PFS was demonstrated for the study arm (20.5 months for the FOLFOX/yttrium-90 arm vs. 12.6 months for the chemotherapy only arm; HR, 0.69; 95% CI, 0.55–0.90; P = .002). The FOXFIRE and FOXFIRE Global studies were performed in the same manner as the SIRFLOX trial with the intention to compile all data and allow assessment of oncologic outcomes in a larger cohort.⁴⁸⁷ Pooled data from 1103 patients in these three prospective trials showed similar findings as in the SIRFLOX trial with prolongation of the liver PFS in the group treated by radioembolization but no difference in OS and PFS. Of interest was the finding of a median OS benefit with radioembolization plus chemotherapy compared to chemotherapy alone in the subgroup of patients with right-sided primary origin (22.0 vs. 17.1 months; HR, 0.641; *P* = .008).⁴⁸⁸ Based on these data, further investigation is needed to identify the role of radioembolization at earlier stages of disease in patients with right-sided primary origin. Whereas very little data show any impact on patient survival and the data supporting its efficacy are limited, toxicity with radioembolization is relatively low. 486,489-491 Consensus amongst panel members is that arterially directed
catheter therapy and, in particular, yttrium-90 microsphere selective internal radiation is an option in highly selected patients with chemotherapy-resistant/-refractory disease and with predominant hepatic metastases. #### Tumor Ablation Resection is the standard approach for the local treatment of resectable metastatic disease. However, patients with liver or lung oligometastases can also be considered for tumor ablation therapy, particularly in cases that may not be optimal for resection. Apple Ablative techniques include radiofrequency ablation (RFA), Apple Microwave ablation (MWA), cryoablation, and electro-coagulation (irreversible electroporation). There is extensive evidence on the use of RFA as a reasonable treatment option for non-surgical candidates and for recurrent disease after hepatectomy with small liver metastases that can be treated with clear margins. Apple Appl A small number of older retrospective studies have compared RFA and resection in the treatment of liver or lung metastases. 432,499-502 Most of these studies have shown RFA to be relatively inferior to resection in terms of rates of local recurrence and 5-year OS. ^{499,503} Whether the differences in outcome observed for patients with liver metastases treated with RFA versus resection alone are from patient selection bias, lack of treatment assessment based on the ability to achieve margins, technologic limitations of RFA, or a combination of these factors remains unclear.⁵⁰¹ A 2012 phase II trial randomized 119 patients to receive systemic treatment alone (FOLFOX with or without bevacizumab) or systemic treatment plus RFA, with or without resection. 504 No difference in OS was initially seen, but PFS was improved at 3 years in the RFA group (27.6% vs. 10.6%; HR, 0.63; 95% CI, 0.42–0.95; P= .025). A subsequent analysis following prolonged follow-up of the same population in this phase II RCT showed that OS was improved in the combined modality arm (HR, 0.58; 95% CI, 0.38–0.88; P= .01), with a 3-, 5-, and 8-year OS of 56.9%, 43.1%, and 35.9% for the combined modality arm compared to 55.2%, 30.3%, and 8.9% for the chemotherapy alone arm. 458 This study documented a long-term survival benefit for patients receiving RFA in addition to chemotherapy compared to those treated by chemotherapy only. Data on ablative techniques other than RFA are growing. $^{493,505-512}$ However, in a comparison of RFA with MWA, outcomes were similar with no local tumor progression for metastases ablated with margins greater than 10 mm (A0) and a relatively better control of perivascular tumors with the use of MWA (P = .021). 512 Similarly, two studies and a position paper by a panel of experts indicated that ablation may provide acceptable oncologic outcomes for selected patients with small liver metastases that can be ablated with sufficient margins. 456,457,500 In the same way, a 2018 systematic review confirmed that MWA provides oncologic outcomes similar to resection. 513 Several publications have indicated that the significance of margin creation is particularly important for *RAS*-mutant metastases. $^{514-516}$ Regarding pulmonary ablation, a large prospective database of two French cancer centers that enrolled 566 consecutive patients with 1037 lung metastases (the majority colorectal in origin) received initial treatment with RFA and 136 patients (24%) underwent repeat RFA.⁵¹⁷ PFS rates at years 1 through 4 were 40.2%, 23.3%, 16.4%, and 13.1%, respectively. Five-year OS after RFA in CRC pulmonary ablation ranged from 40.7% to 67.5% depending on risk factors. MWA has been used increasingly within the latest years with a report indicating no local progression for small tumors ablated with margins of at least 5 mm.⁵¹⁸ A multicenter, prospective phase II study (SOLSTICE) included 128 patients with 224 metastatic lung tumors that were targeted by pulmonary cryoablation.⁵¹⁹ In this trial, investigators demonstrated a local response of the ablated tumor at 1 and 2 years of 85.1% and 77.2%, respectively. With the use of a second cryoablation for recurrent tumor, 1- and 2-year local tumor control reached 91.1% and 84.4%, respectively. In this study, 1- and 2-year survival rates were 97.6% and 86.6%, respectively. The grade 3 and grade 4 complication rates were low, at 4.7% and 0.6%. An emergent indication for ablation is the discontinuation of chemotherapy while controlling oligometastatic pulmonary disease. ^{518,520} The median chemotherapy-free survival (time interval between ablation and resuming chemotherapy or death without chemotherapy) was 12.2 months. Patients with no extrapulmonary metastases had a longer median chemotherapy-free survival compared to those without (20.9 vs. 9.2 months). ⁵²⁰ Resection or ablation (either alone or in combination with resection) should be reserved for patients with metastatic disease that is entirely amenable to local therapy with adequate margins. Use of surgery, ablation, or the combination of both modalities, with the goal of less-than-complete eradication of all known sites of disease is not recommended other than in the scope of a clinical trial. #### Liver- or Lung-Directed External Beam Radiation EBRT to the metastatic site can be considered in highly selected cases in which the patient has a limited number of metastases, including the liver or lung; or the patient is symptomatic; or in the setting of a clinical trial. It should be delivered in a highly conformal manner and should not be used in place of surgical resection. The possible techniques include three-dimensional conformal RT (CRT), SBRT, 414,459,460,521 and IMRT, which uses computer-assisted inverse treatment planning to focus radiation to the tumor site and potentially decrease toxicity to healthy tissue. 408,522-525 While CRC has been shown to be a relatively radioresistant histology, 526,527 multiple studies have demonstrated effective local control with minimal toxicity using SBRT in the treatment of liver 522,528 and lung 529,530 metastases. In addition, data on the benefit of using SBRT to treat multiple metastatic lesions are emerging. A randomized phase II trial with multiple cancer types, including a small number of CRC origin, and up to five metastatic lesions in different organs demonstrated an improvement in OS with the addition of SBRT to standard-of-care treatment. In patients with liver- or lung-limited disease that is not amenable to complete resection or ablation, SBRT may be considered as local therapy in centers with expertise. SBRT for the treatment of extrahepatic disease can be considered in select cases, or as part of a clinical trial. #### **Peritoneal Carcinomatosis** Approximately 17% of patients with mCRC have peritoneal carcinomatosis, with 2% having the peritoneum as the only site of metastasis. Patients with peritoneal metastases generally have a shorter PFS and OS than those without peritoneal involvement. 120,532 The goal of treatment for most abdominal/peritoneal metastases is palliative, rather than curative, and primarily consists of systemic therapy (see *Systemic Therapy for Advanced or Metastatic Disease*) with palliative surgery or stenting if needed for obstruction or impending obstruction. 533-535 If an R0 resection can be achieved, however, surgical resection of isolated peritoneal disease may be considered at experienced centers. The panel cautions that the use of bevacizumab in patients with colon or rectal stents is associated with a possible increased risk of bowel perforation. 536,537 Cytoreductive Debulking with Hyperthermic Intraperitoneal Chemotherapy Several surgical series and retrospective analyses have addressed the role of cytoreductive surgery (ie, peritoneal stripping surgery) in combination with perioperative hyperthermic intraperitoneal chemotherapy (HIPEC) for the treatment of peritoneal carcinomatosis without extraabdominal metastases. 538-547 In an RCT of this approach, Verwaal et al randomized 105 patients to either standard therapy (5-FU/LV with or without palliative surgery) or to aggressive cytoreductive surgery and HIPEC with mitomycin C; postoperative 5-FU/LV was given to 33 of 47 patients.⁵⁴⁸ OS was 12.6 months in the standard arm and 22.3 months in the HIPEC arm (P = .032). However, treatment-related morbidity was high, and the mortality was 8% in the HIPEC group, mostly related to bowel leakage. In addition, long-term survival does not seem to be improved by this treatment as seen by follow-up results.⁵⁴⁹ Importantly, this trial was performed without oxaliplatin, irinotecan, or molecularly targeted agents. Some experts have argued that the OS difference seen might have been much smaller if these agents had been used (ie, the control group would have had better outcomes).550 Other criticisms of the Verwaal trial have been published.⁵⁵⁰ One important point is that the trial included patients with peritoneal carcinomatosis of appendiceal origin, a group that has seen greater benefit with the cytoreductive surgery/HIPEC approach.^{539,543,551,552} A retrospective multicenter cohort study reported median OS times of 30 and 77 months for patients with peritoneal carcinomatosis of colorectal origin and appendiceal origin, respectively, treated with HIPEC or with cytoreductive surgery and early postoperative intraperitoneal chemotherapy.⁵⁴³ The median OS time for patients with pseudomyxoma peritonei, which arises from mucinous appendiceal carcinomas, was not reached at the time of publication. A retrospective international registry study reported 10- and 15-year survival rates of 63% and 59%, respectively, in patients with pseudomyxoma peritonei from mucinous appendiceal carcinomas treated with cytoreductive surgery and HIPEC.²²³ HIPEC was not shown to be associated with improvements in OS in this study, whereas completeness of cytoreduction was. Thus, for patients with pseudomyxoma peritonei, optimal treatment is still unclear.⁵⁵³ More recently, the randomized, phase III multicenter,
PRODIGE 7 trial reported results from 265 patients with colorectal peritoneal carcinomatosis who received standard treatment of systemic chemotherapy before and/or after cytoreductive surgery and were randomized to standard treatment plus HIPEC with oxaliplatin or standard treatment alone. 554 This study reported no significant difference in OS, with a median OS of 41.7 months in the HIPEC arm versus 41.2 months in the non-HIPEC arm. While the morbidity rates did not differ significantly at 30 days, the 60-day grade 3-5 morbidity rate was significantly higher in the HIPEC arm (26% vs. 16%; P = .035). Another randomized, phase III study, PROPHYLOCHIP-PRODIGE 15, reported similar results to PRODIGE 7 in that the group randomized to second-look surgery plus HIPEC showed worse 3-year DFS compared to surveillance (44% vs. 53%) for patients with mCRC and synchronous and localized peritoneal metastases removed during tumor resection, resected ovarian metastases, or a perforated tumor. 555 41% of patients in the second-look surgery plus HIPEC group reported grade 3 or 4 complications. The individual components of the HIPEC approach have not been well studied. In fact, studies in rats have suggested that the hyperthermia component of the treatment is irrelevant. 556 Results of a retrospective cohort study also suggest that heat may not affect outcomes from the procedure.⁵⁴⁰ In addition, a randomized trial compared systemic 5-FU/oxaliplatin to cytoreductive surgery and intraperitoneal 5-FU without heat.⁵⁵⁷ Although terminated prematurely because of poor accrual, analysis suggested that the cytoreductive surgery plus IPEC approach may have been superior to the systemic therapy approach (2-year OS, 54% vs. 38%; P = .04) for patients with resectable colorectal peritoneal metastases. In addition, significant morbidity and mortality are associated with this procedure. A 2006 meta-analysis of two RCTs and 12 other studies reported morbidity rates ranging from 23% to 44% and mortality rates ranging from 0% to 12%. 547 Furthermore, recurrences after the procedure are very common. 558 Whereas the risks are reportedly decreasing with time (ie, more recent studies report 1%–5% mortality rates at centers of excellence 544,550), the benefits of the approach have not been definitively shown, and HIPEC remains very controversial. 559-562 There are also limited data to inform the use of perioperative systemic therapy before or after resection of peritoneal metastases. An observational cohort study from the Netherlands Cancer Registry used data from 393 patients with isolated synchronous CRC peritoneal metastases to investigate the potential benefit of adjuvant chemotherapy. This study found that following complete cytoreductive surgery and HIPEC, adjuvant systemic chemotherapy was associated with improved median OS compared to active surveillance (39.2 vs. 24.8 months; adjusted HR, 0.66; 95% CI, 0.49–0.88; *P* = .006). The CAIRO6 study is a phase II randomized, parallel-group Dutch trial of 79 patients with isolated resectable peritoneal CRC metastases who were randomized to cytoreductive surgery with HIPEC, plus or minus perioperative systemic therapy. Comparable proportions of patients on the study had macroscopic complete cytoreductive surgery/HIPEC (89% vs. 86%) and major postoperative morbidity was 22% versus 33% between the perioperative systemic therapy and control arms, respectively. Grade ≥3 systemic therapy-related toxicity was observed in 35% of patients and ORR were 28% (radiologic response) and 38% (major pathologic response) following neoadjuvant therapy. The panel currently believes that complete cytoreductive surgery and/or intraperitoneal chemotherapy can be considered in experienced centers for selected patients with limited peritoneal metastases for whom R0 resection can be achieved. However, the significant morbidity and mortality associated with HIPEC, as well as the conflicting data on clinical efficacy, make this approach very controversial. #### **Determining Resectability** The consensus of the panel is that patients diagnosed with potentially resectable mCRC should undergo an upfront evaluation by a multidisciplinary team, including surgical consultation (ie, with an experienced hepatic surgeon in cases involving liver metastases) to assess resectability status. The criteria for determining patient suitability for resection of metastatic disease are the likelihood of achieving complete resection of all evident disease with negative surgical margins and maintaining adequate liver reserve. 565-568 When the remnant liver is insufficient in size based on cross-sectional imaging volumetrics, preoperative portal vein embolization of the involved liver can be done to expand the future liver remnant. 569 It should be noted that size alone is rarely a contraindication to resection of a tumor. Resectability differs fundamentally from endpoints that focus more on palliative measures. Instead, the resectability endpoint is focused on the potential of surgery to cure the disease. 570 Resection should not be undertaken unless complete removal of all known tumor is realistically possible (R0 resection), because incomplete resection or debulking (R1/R2 resection) has not been shown to be beneficial.412,565 The role of PET/CT in determining resectability of patients with mCRC is discussed in *Workup and Management of Synchronous Metastatic Disease*, below. #### **Neoadjuvant Therapy and Conversion to Resectability** The majority of patients diagnosed with metastatic colorectal disease have unresectable disease. However, for those with liver-limited unresectable disease that, because of involvement of critical structures, cannot be resected unless regression is accomplished, preoperative systemic therapy is being increasingly considered in highly selected cases in an attempt to downsize colorectal metastases and convert them to a resectable status. Patients presenting with large numbers of metastatic sites within the liver or lung are unlikely to achieve an R0 resection simply based on a favorable response to therapy, as the probability of complete eradication of a metastatic deposit by systemic therapy alone is low. These patients should be regarded as having unresectable disease not amenable to conversion therapy. In some highly selected cases, however, patients with disease that has had significant response to conversion therapy can be converted from unresectable to resectable disease status. 503 Any active metastatic systemic regimen can be used in an attempt to convert a patient's unresectable disease status to a resectable disease status, because the goal is not specifically to eradicate micrometastatic disease, but rather to obtain the optimal size regression of the visible metastases. An important point to keep in mind is that irinotecan- and oxaliplatin-based chemotherapeutic regimens may cause liver steatohepatitis and sinusoidal liver injury, respectively.⁵⁷¹⁻⁵⁷⁵ Studies have reported that chemotherapy-associated liver injury (including severe sinusoidal dilatation and steatohepatitis) is associated with morbidity and complications following hepatectomy for colorectal liver metastases.^{571,572,575,576} To limit the development of hepatotoxicity, it is therefore recommended that surgery be performed as soon as possible after the patient's disease becomes resectable. Some of the trials addressing various conversion therapy regimens are discussed below. In the study by Pozzo et al, it was reported that chemotherapy with irinotecan combined with 5-FU/LV enabled a significant portion (32.5%) of the patients with initially unresectable liver metastases to undergo liver resection.⁵⁶⁷ The median time to progression was 14.3 months, with all of these patients alive at a median follow-up of 19 months. In a phase II study conducted by the NCCTG,413 42 patients with unresectable liver metastases were treated with FOLFOX. Twenty-five patients (60%) had tumor reduction and 17 patients (40%; 68% of the responders) were able to undergo resection after a median period of 6 months of chemotherapy. In another study, 1104 patients with initially unresectable colorectal liver metastases were treated with chemotherapy, which included oxaliplatin in the majority of cases, and 138 patients (12.5%) classified as "good responders" underwent secondary hepatic resection. 422 The 5-year DFS rate for these 138 patients was 22%. In addition, results from a retrospective analysis of 795 previously untreated patients with mCRC enrolled in the Intergroup N9741 randomized phase III trial evaluating the efficacy of mostly oxaliplatin-containing chemotherapy regimens indicated that 24 patients (3.3%; 2 of the 24 had lung metastases) were able to undergo curative resection after treatment.⁵⁷⁷ The median OS time in this group was 42.4 months. In addition, first-line FOLFOXIRI (infusional 5-FU, LV, oxaliplatin, irinotecan) has been compared with FOLFIRI (infusional 5-FU, LV, irinotecan) in two randomized clinical trials in patients with unresectable disease. 578,579 In both studies, FOLFOXIRI led to an increase in R0 secondary resection rates: 6% versus 15%, P = .033 in the Gruppo Oncologico Nord Ovest (GONO) trial 578 ; and 4% versus 10%, P = .08 in the Gastrointestinal Committee of the HORG trial. 579 In a follow-up study of the GONO trial, the 5-year survival rate was higher in the group receiving FOLFOXIRI (15% vs. 8%), with a median OS of 23.4 versus 16.7 months (P = .026). 580 Chemotherapy regimens may be combined with bevacizumab or with cetuximab or panitumumab for *KRAS/NRAS/BRAF* wild-type unresectable synchronous disease. In addition, checkpoint inhibitors may be considered for microsatellite instability-high (MSI-H)/deficient mismatch repair (dMMR) disease as an alternative to chemotherapy-containing regimens. See the following sections for data supporting these treatment approaches. When systemic therapy is planned for patients with
initially unresectable disease, the panel recommends that a surgical re-evaluation be planned 2 months after initiation of therapy, and that those patients who continue to receive systemic therapy undergo surgical re-evaluation every 2 months thereafter. 575,581-583 Reported risks associated with chemotherapy include the potential for development of liver sinusoidal dilatation, steatosis, or steatohepatitis. 571,576,584 To limit the development of hepatotoxicity, it is therefore recommended that surgery be performed as soon as possible after the patient's disease becomes resectable. #### Neoadjuvant Bevacizumab for Metastatic Disease The efficacy of bevacizumab in combination with chemotherapy in the treatment of unresectable metastatic disease (see *Systemic Therapy for Advanced or Metastatic Disease*) has led to a study of its use in combination with these regimens in the preoperative setting. However, the safety of administering bevacizumab preoperatively in combination with 5-FU-based regimens has not been adequately evaluated. A retrospective evaluation of data from two randomized clinical trials of 1132 patients receiving chemotherapy with or without bevacizumab as initial therapy for mCRC indicated that the incidence of wound healing complications was increased for the group of patients undergoing a major surgical procedure while receiving a bevacizumab-containing regimen when compared to the group receiving chemotherapy alone while undergoing major surgery (13% vs. 3.4%, respectively; P = .28). 585 However, when chemotherapy plus bevacizumab or chemotherapy alone was administered prior to surgery, the incidence of wound healing complications in either group of patients was low (1.3% vs. 0.5%; P = .63) The randomized phase III HEPATICA trial, which closed prematurely due to poor accrual, found that global quality of life scores were higher in patients receiving CAPEOX plus bevacizumab than those receiving CAPEOX alone after resection of liver metastases, but no conclusions could be drawn regarding the primary endpoint of DFS. 586 The role of bevacizumab in the patient with unresectable mCRC, whose disease is felt to be potentially convertible to resectability with a reduction in tumor size, has also been studied. Data seem to suggest that bevacizumab modestly improves the response rate to irinotecan-based regimens. 587,588 Thus, when an irinotecan-based regimen is selected for an attempt to convert unresectable disease to resectability, the use of bevacizumab would seem to be an appropriate consideration. The data on use of bevacizumab with oxaliplatin-based therapy in the conversion to resectability setting are mixed. On one hand, a 1400-patient, randomized, double-blind, placebo-controlled trial of CAPEOX or FOLFOX with or without bevacizumab showed absolutely no benefit in terms of response rate or tumor regression for the addition of bevacizumab, as measured by both investigators and an independent radiology review committee. 589 On the other hand, the randomized BECOME trial of 241 patients with initially unresectable RAS mutant CRC liver metastases showed improvement in the resectability of liver metastases as well as response rates and survival with mFOLFOX6 plus bevacizumab compared to mFOLFOX6 alone. 590 R0 resection rates were 22.3% in the bevacizumab combo versus 5.8% with mFOLFOX6 alone (P < .01). Because it is not known in advance whether resectability will be achieved, the use of bevacizumab with oxaliplatinbased therapy in this setting is acceptable. A pooled analysis of the phase III TRIBE and TRIBE2 studies compared upfront FOLFOXIRI plus bevacizumab to chemotherapy doublets (FOLFOX or FOLFIRI) plus bevacizumab for oligometastatic mCRC.591 In agreement with the primary outcomes from these studies, the benefits of using the chemotherapy triplet compared to the doublet were retained in the patient population that had oligometastatic disease, with interaction P scores above significance for PFS, OS, and ORR outcome measures. Therefore, the authors of this study conclude that FOLFOXIRI provides a benefit for oligometastatic CRC, including when used as upfront treatment in conjunction with locoregional treatments, such as resection. Furthermore, an analysis of individual patient data from five trials that compared upfront FOLFOXIRI plus bevacizumab to doublet chemotherapy plus bevacizumab reported a higher R0 resection rate in the FOLFOXIRI arm. 592 Based on the limited data that are available, as well as their own institutional practice patterns, the NCCN Panel has included FOLFIRINOX as an option for neoadjuvant treatment of resectable synchronous mCRC. The recommendation's category 2B rating reflects the relative scarcity of The panel recommends against the use of bevacizumab as neoadjuvant treatment of patients with resectable metastatic colon cancer. For patients who receive bevacizumab for unresectable disease and are converted to a resectable state, the panel recommends at least a 6-week interval (which corresponds to two half-lives of the drug⁵⁹³) between the last dose of bevacizumab and surgery. Re-initiation of bevacizumab should be delayed at least 6 to 8 weeks postoperatively. #### Neoadjuvant Cetuximab and Panitumumab for Metastatic Disease data supporting this treatment option. More recent favorable results of randomized clinical trials evaluating FOLFIRI, FOLFOX, or FOLFOXIRI in combination with anti-epidermal growth factor receptor (EGFR) inhibitors for the purpose of conversion of unresectable disease to resectable disease have been reported. For instance, in the CELIM phase II trial, patients were randomized to receive cetuximab with either FOLFOX6 or FOLFIRI. 594 Retrospective analysis showed that in both treatment arms combined resectability increased from 32% to 60% after chemotherapy in patients with wild-type KRAS exon 2 tumors with the addition of cetuximab (P < .0001). Final analysis of this trial showed that the median OS of the entire cohort was 35.7 months (95% CI, 27.2-44.2 months), with no difference between the arms. 595 Another RCT compared chemotherapy (mFOLFOX6 or FOLFIRI) plus cetuximab to chemotherapy alone in patients with unresectable CRC metastatic to the liver. 596 The primary endpoint was the rate of conversion to resectability based on evaluation by a multidisciplinary team. After evaluation, 20 of 70 (29%) patients in the cetuximab arm and 9 of 68 (13%) patients in the control arm were determined to be eligible for curative-intent hepatic resection. R0 resection rates were 25.7% in the cetuximab arm and 7.4% in the control arm (P < .01). In addition, surgery improved the median survival time compared to unresected participants in both arms, with longer survival in patients receiving cetuximab (46.4 vs. 25.7 months; P = .007 for the cetuximab arm and 36.0 vs. 19.6 months; P = .016 for the control arm). The randomized, phase II VOLFI trial compared the efficacy and safety of mFOLFOXIRI in combination with panitumumab to FOLFOXIRI alone in patients with RAS wild-type, primarily non-resectable mCRC. ⁵⁹⁷ Of the cohort with unresectable, potentially convertible metastases, 75% were ultimately converted to resectable with FOLFOXIRI + panitumumab compared to 36.4% with FOLFOXIRI alone. ORR was also improved in the combination compared to FOLFOXIRI alone while PFS was similar between the two treatments and OS showed a trend in favor of the combination. A meta-analysis of four RCTs concluded that the addition of cetuximab or panitumumab to chemotherapy significantly increased the response rate, the R0 resection rate (from 11%–18%; RR, 1.59; P = .04), and PFS, but not OS in patients with wild-type *KRAS* exon 2-containing tumors. ⁵⁹⁸ The randomized, phase III TRIPLETE study compared mFOLFOXIRI plus panitumumab to mFOLFOX6 plus panitumumab as initial therapy for 435 patients with unresectable *RAS* and *BRAF* wild-type mCRC. 599,600 This trial found that intensification of the chemotherapy regimen did not provide additional benefit when combined with panitumumab and led to higher rates of gastrointestinal (GI) toxicity. Response rates (73% vs. 76%), early tumor shrinkage (57% vs. 58%), depth of response (48% vs. 47%), R0 resection rate (25% vs. 29%), and median PFS (12.7 vs. 12.3 months) were similar between mFOLFOXIRI plus panitumumab and mFOLFOX plus panitumumab, respectively. Reflecting this data, the NCCN Panel does not recommend the combination of FOLFIRINOX with cetuximab or panitumumab for unresectable mCRC, while the FOLFIRI or FOLFOX combinations are included as recommendations within the same setting. #### Neoadjuvant Checkpoint Inhibitors for Metastatic Disease While there are a lack of data in this setting, the panel considers pembrolizumab; dostarlimab-gxly; or nivolumab, as a monotherapy or in combination with ipilimumab, as preferred options for neoadjuvant therapy of resectable dMMR/MSI-H mCRC. While there are no clinical trial data supporting this approach, a few case studies have reported notable responses to pembrolizumab and nivolumab when used as a neoadjuvant therapy for dMMR advanced or mCRC.⁶⁰¹⁻⁶⁰³ The panel notes that special caution should be taken to monitor for signs of progression, which could potentially cause a previously resectable tumor to become unresectable. While this is a concern for any regimen being used as neoadjuvant therapy in the resectable mCRC setting, the risk is possibly higher with immunotherapy compared to traditional chemotherapy options. # Perioperative Therapy for Resectable Metachronous Metastatic Disease Perioperative administration of chemotherapy is recommended for most patients undergoing liver or lung resection for metachronous metastases with the goal of increasing the likelihood that residual microscopic disease will be eradicated. A meta-analysis identified three randomized clinical trials comparing surgery alone to surgery plus systemic therapy with 642 evaluable patients with colorectal liver
metastases. 604 The pooled analysis showed a benefit of chemotherapy in PFS (pooled HR, 0.75; CI, 0.62-0.91; P = .003) and DFS (pooled HR, 0.71; CI, 0.58-0.88; P = .001), but not in OS (pooled HR, 0.74; CI, 0.53–1.05; P = .088). Another metaanalysis published in 2015 combined data on 1896 patients from 10 studies and also found that perioperative chemotherapy improved DFS (HR, 0.81; 95% CI, 0.72–0.91; P = .0007) but not OS (HR, 0.88; 95% CI, 0.77-1.01; P = .07) in patients with resectable colorectal liver metastases. 605 Additional meta-analyses have also failed to observe a statistically significant OS benefit with the addition of adjuvant chemotherapy in resectable mCRC.606-608 The choice of regimen in the perioperative setting depends on several factors, including the patient's history of treatment with chemotherapy or immunotherapy and the response rates and safety/toxicity issues associated with the regimens, as outlined in the guidelines. Biologics are not recommended in the perioperative metastatic setting, with the exception of initial therapy in patients with unresectable disease that may be converted to a resectable state or checkpoint inhibitor immunotherapy for dMMR/MSI-H disease. The phase III EORTC 40983 study, evaluating use of perioperative FOLFOX (6 cycles before and 6 cycles after surgery) for patients with resectable liver metastases, showed absolute improvements in 3-year PFS of 8.1% (P = .041) and 9.2% (P = .025) for all eligible patients and all patients with resected disease, respectively, when chemotherapy in conjunction with surgery was compared with surgery alone. 609 The partial response rate after preoperative FOLFOX was 40%, and operative mortality was less than 1% in both treatment groups. However, no difference in OS was seen between the groups, perhaps because second-line therapy was given to 77% of the patients in the surgery-only arm and 59% of the patients in the chemotherapy arm. 610 Furthermore, a multi-institutional phase II study investigating the feasibility and efficacy of preoperative mFOLFOX6 for patients with resectable liver metastases demonstrated the feasibility of this approach. 611 Three-year OS and PFS rates were 81.9% and 47.4%, respectively. The New EPOC trial, which was stopped early because it met protocoldefined futility criteria, found a lack of benefit to cetuximab with chemotherapy in the perioperative metastatic setting (>85% received FOLFOX or CAPEOX; patients with prior oxaliplatin received FOLFIRI). In fact, with less than half of expected events observed, PFS was significantly reduced in the cetuximab arm (14.8 vs. 24.2 months; HR, 1.50; 95% CI, 1.00–2.25; P < .048). A subsequent analysis of New EPOC, carried out 5 years after the last patient was recruited, reported a reduced median OS for chemotherapy plus cetuximab compared to chemotherapy alone (55.4 vs. 81.0 months; HR, 1.45; 95% CI, 1.02–2.05; P = .036). The panel thus recommends against panitumumab and cetuximab as perioperative treatment for resectable metachronous metastatic disease. The panel also notes that cetuximab and panitumumab should be used with caution in patients with unresectable disease that could potentially be converted to a resectable status. The optimal sequencing of systemic therapy and resection remains unclear. Patients with resectable disease may undergo resection first, followed by postoperative adjuvant chemotherapy. Alternatively, perioperative (neoadjuvant plus postoperative) systemic therapy can be used.^{614,615} Potential advantages of preoperative therapy include: earlier treatment of micrometastatic disease, determination of responsiveness to therapy (which can be prognostic and help in planning postoperative therapy), and avoidance of local therapy for those patients with early disease progression. Potential disadvantages include missing the "window of opportunity" for resection because of the possibility of disease progression or achievement of a complete response, thereby making it difficult to identify areas for resection. 415,616,617 In fact, results from studies of patients with CRC receiving preoperative therapy indicated that viable cancer was still present in most of the original sites of metastases when these sites were examined pathologically despite achievement of a complete response as evaluated on CT scan. 617-619 Therefore, during treatment with preoperative systemic therapy, frequent evaluations must be undertaken and close communication must be maintained among medical oncologists, radiologists, surgeons, and patients so that a treatment strategy can be developed that optimizes exposure to the preoperative regimen and facilitates an appropriately timed surgical intervention.⁵⁷¹ Other reported risks associated with the preoperative therapy approach include the potential for development of liver steatohepatitis and sinusoidal liver injury when irinotecan- and oxaliplatin-based chemotherapeutic regimens are administered, respectively. ⁵⁷¹⁻⁵⁷⁵ To reduce the development of hepatotoxicity, the neoadjuvant period is usually limited to 2 to 3 months, and patients should be carefully monitored by a multidisciplinary team. #### Systemic Therapy for Advanced or Metastatic Disease The current management of disseminated mCRC involves various active drugs, either in combination or as single agents. The choice of therapy is based on consideration of the goals of therapy, the type and timing of prior therapy, the mutational profile of the tumor, and the differing toxicity profiles of the constituent drugs. Although the specific regimens listed in the guideline are designated according to whether they pertain to initial therapy, therapy after first progression, or therapy after second progression, it is important to clarify that these recommendations represent a continuum of care and that these lines of treatment are blurred rather than discrete. For example, if oxaliplatin is administered as a part of an initial treatment regimen but is discontinued after 12 weeks or earlier for escalating neurotoxicity, continuation of the remainder of the treatment regimen would still be considered initial therapy. Principles to consider at the start of therapy include: 1) preplanned strategies for altering therapy for disease exhibiting a tumor response or for disease characterized as stable or progressive; and 2) plans for adjusting therapy for patients who experience certain toxicities. For example, decisions related to therapeutic choices after first progression of disease should be based, in part, on the prior therapies received (ie, exposing the patient to a range of cytotoxic agents). Furthermore, an evaluation of the efficacy and safety of these regimens for a patient must consider not only the component drugs, but also the doses, schedules, and methods of administration of these agents, and the potential for surgical cure and the performance status of the patient. #### Sequencing and Timing of Therapies Few studies have addressed the sequencing of therapies in advanced metastatic disease. Prior to the use of targeted agents, several studies randomized patients to different schedules.⁶²¹⁻⁶²⁴ The data from these trials suggest that there is little difference in clinical outcomes if intensive therapy is given in first line or if less intensive therapy is given first followed by more intensive combinations. Results from a randomized study to evaluate the efficacy of FOLFIRI and FOLFOX regimens as initial therapy and to determine the effect of using sequential therapy with the alternate regimen after first progression showed neither sequence to be significantly superior with respect to PFS or median OS.⁶²⁴ A combined analysis of data from seven phase III clinical trials in advanced CRC provided support for a correlation between an increase in median survival and administration of all of the three cytotoxic agents (ie, 5-FU/LV, oxaliplatin, irinotecan) at some point in the continuum of care.⁶²⁵ Furthermore, OS was not found to be associated with the order in which these drugs were received. A study of 6286 patients from nine trials that evaluated the benefits and risks associated with intensive first-line treatment in the setting of mCRC treatment showed similar therapeutic efficacy for patients with a performance status of 2 or 1 or less as compared with control groups. However, the risks of certain GI toxicities were significantly increased for patients with a performance status of 2.626 The phase III C-cubed study compared upfront combination therapy with a fluoropyrimidine and oxaliplatin with bevacizumab to sequential treatment using a fluoropyrimidine with bevacizumab followed by the addition of oxaliplatin at first progression. 627 Sequential treatment showed superiority in terms of time to failure of strategy (15.2 vs. 7.8 months; P < .001); however, median OS was similar between the sequential and combination arms (27.5 vs. 27.0 months; HR, 0.92; 95% CI, 0.66 to 1.28; P = .61) and ORR was improved in the combination arm compared to the sequential arm (51.7% vs. 33.1%; P = .002). Overall, the panel does not consider one regimen to be preferable over another as initial therapy for metastatic disease. The panel also does not indicate a preference for biologic agents used as part of initial therapy (ie, bevacizumab, cetuximab, panitumumab, none). See *First-line Systemic* *Therapy*, below, for more information on data supporting bevacizumab versus cetuximab or panitumumab as part of the initial therapy regimen. #### Therapy Retreatment/Rechallenge Due to few efficacious options in later lines of therapy, there has been considerable interest in the possibility of retreating with a systemic therapy used during an earlier line of treatment. Most studies that have reported on this approach have been retrospective, detailing institutional experiences retreating with chemotherapeutics⁶²⁸⁻⁶³⁰ or targeted therapies (eg, EGFR inhibitors)^{628,631-635} and concluded that a
retreatment approach was feasible, based on response and/or toxicity data. However, these studies were mainly small and did not differentiate between patients who had therapy stopped due to progression compared to other reasons, limiting the quality of these data. The randomized FIRE-4 trial (NCT02934529) is currently under recruitment and will seek to address this question. Therefore, until stronger data become available, the panel agrees that for patients who had therapy stopped for a reason other than progression (eg, use as adjuvant therapy, cumulative toxicity, treatment break, patient preference), rechallenge with this therapy would be an option. However, based on the current lack of evidence, retreatment with a therapy following progression on that regimen is not recommended. #### Maintenance Therapy Interest in the use of a maintenance therapy approach after first-line treatment of unresectable mCRC is growing. In general, this approach involves intensive first-line therapy, followed by less intensive therapy until progression in patients whose disease had a good response to initial treatment. The CAIRO3 study was an open-label, phase III, multicenter RCT assessing maintenance therapy with capecitabine/bevacizumab versus observation in 558 patients with mCRC and with stable disease or better after first-line treatment with CAPEOX/bevacizumab. 636 Following first progression, both groups were to receive CAPEOX/bevacizumab again until second progression (PFS2). After a median follow-up of 48 months, the primary endpoint of PFS2 was significantly better in the maintenance arm (8.5 vs. 11.7 months; HR, 0.67; 95% CI, 0.56–0.81; P < .0001), with 54% of patients overall receiving CAPEOX/bevacizumab the second time. Quality of life was not affected by maintenance therapy, although 23% of patients in the maintenance group developed hand-foot syndrome during the maintenance period. A non-significant trend towards improved OS was seen in the maintenance arm (18.1 vs. 21.6 months; adjusted HR, 0.83; 95% CI, 0.68-1.01; P = .06). A molecular subgroup analysis of CAIRO3 showed that the capecitabine/bevacizumab maintenance strategy was effective across all mutational subgroups (RAS/BRAF wild-type, RAS mutant, and BRAF V600E), although the benefit of maintenance was most pronounced for patients with RAS/BRAF wild-type or BRAF V600E mutation-positive tumors.637 The AIO 0207 trial was an open-label, noninferiority, randomized phase III trial that randomized 472 patients whose disease did not progress on induction FOLFOX/bevacizumab or CAPEOX/bevacizumab to no maintenance therapy or to maintenance therapy with fluoropyrimidine/bevacizumab or with bevacizumab alone. The planned protocol included re-introduction of primary therapy after first progression. The primary endpoint was time to failure of strategy, defined as time from randomization to second progression, death, and initiation of treatment with a new drug. After a medium follow-up of 17 months, the median time to failure of strategy was 6.4 months (95% CI, 4.8–7.6) for the no treatment group, 6.9 months (95% CI, 6.1–8.5) for the fluoropyrimidine/bevacizumab group, and 6.1 months (95% CI, 5.3–7.4) for the bevacizumab alone group. Compared with fluoropyrimidine/bevacizumab, bevacizumab alone was noninferior, whereas the absence of maintenance therapy was not. However, only about one third of trial participants received the re-induction therapy, thus limiting the interpretation of results. OS was one of the secondary endpoints of the trial, and no relevant difference was seen between the arms. PRODIGE 9 was a randomized phase III trial that investigated the effect of bevacizumab maintenance compared to no treatment during chemotherapy-free intervals following induction chemotherapy with 12 cycles of FOLFIRI plus bevacizumab. Median tumor control duration was 15 months in both groups. PFS was 9.2 and 8.9 months and OS was 21.7 and 22.0 months for bevacizumab maintenance and no treatment, respectively. Therefore, this study concluded that bevacizumab maintenance did not improve outcomes.⁶³⁹ The randomized phase III noninferiority SAKK 41/06 trial addressed the question of continuing bevacizumab alone as maintenance therapy after chemotherapy plus bevacizumab in first-line therapy. The primary endpoint of time to progression was not met (4.1 months for bevacizumab continuation vs. 2.9 months for no continuation; HR, 0.74; 95% CI, 0.58–0.96), and no difference in OS was observed (25.4 vs. 23.8 months; HR, 0.83; 95% CI, 0.63–1.1; P = .2). Therefore, noninferiority for treatment holidays versus bevacizumab maintenance therapy was not demonstrated. The GERCOR DREAM trial (OPTIMOX3) was an international, open-label, phase III study that randomized patients with mCRC without disease progression on bevacizumab-based therapy to maintenance therapy with bevacizumab or bevacizumab plus erlotinib. Intention-to-treat (ITT) analysis revealed an advantage in PFS (5.4 vs. 4.9 months; stratified HR, 0.81; 95% CI, 0.66–1.01; P = .06) and OS (24.9 vs. 22.1 months; stratified HR, 0.79; 95% CI, 0.63–0.99; P = .04) with combination therapy. A smaller randomized trial, however, showed no difference in PFS or OS between bevacizumab and bevacizumab/erlotinib maintenance therapy in patients with *KRAS* wild-type tumors.⁶⁴² A meta-analysis identified three randomized trials (682 patients) and concluded that maintenance therapy with bevacizumab/erlotinib significantly increases OS and PFS, with manageable toxicity.⁶⁴³ Another phase III trial investigated the role of capecitabine in the maintenance phase, after initial treatment with FOLFOX or CAPEOX. 644 PFS, the primary endpoint, was 6.4 months in the capecitabine maintenance group and 3.4 months in the group that was observed until progression (HR, 0.54; 95% CI, 0.42–0.70; P < .001). A non-statistically significant difference in the median OS was also seen (HR, 0.85; 95% CI, 0.64–1.11; P = .2247). Toxicities associated with the capecitabine maintenance therapy were acceptable. A systematic review and network meta-analysis of 12 randomized clinical trials comprising 5540 patients with mCRC concluded that a maintenance strategy with a fluoropyrimidine, with or without bevacizumab, led to a significant improvement in PFS, but not in OS.⁶⁴⁵ Given the PFS benefit seen in some studies, but the probable lack of OS benefit, maintenance therapy may be discussed as part of shared decision-making with patients, with observation as an acceptable alternative. #### **Biosimilars** A biosimilar is a biological product that is highly similar to and has no clinically meaningful differences from an existing biologic therapy. 646-653 Several biosimilars are now available in the U.S. market, including biosimilars to two biologics that are recommended in the NCCN Guidelines for Colon Cancer: bevacizumab and trastuzumab. The NCCN Panel has agreed that an U.S. Food and Drug Administration (FDA)-approved biosimilar may be substituted for either bevacizumab or trastuzumab wherever these therapies are recommended within the NCCN Guidelines for Colon Cancer. #### Biomarkers for Systemic Therapy As the role of targeted therapy for treatment of advanced or mCRC has become increasingly prominent, the NCCN Panel has expanded its recommendations regarding biomarker testing. Currently, determination of tumor gene status for *KRAS/NRAS* and *BRAF* mutations, as well as HER2 amplifications and MSI/MMR status (if not previously done), are recommended for patients with mCRC. Testing may be carried out for individual genes or as part of an NGS panel, although no specific methodology is recommended. NGS panels have the advantage of being able to pick up rare and actionable genetic alterations, such as neurotrophic tyrosine receptor kinase (*NTRK*) and rearranged during transfection (*RET*) fusions and may be carried out using either a tissue or blood-based (eg, liquid) biopsy.⁶⁵⁴ Specific information about each of these biomarkers may be found in the sections below. #### KRAS and NRAS Mutations The MAPK pathway of RAS/RAF/MEK/ERK is downstream of EGFR; mutations in components of this pathway are now established to be strong negative predictive markers, essentially precluding efficacy of these therapies. A sizable body of literature has shown that tumors with a mutation in exons 2, 3, or 4 of either the KRAS or NRAS genes are essentially insensitive to cetuximab or panitumumab therapy. 655-665 The panel therefore strongly recommends RAS (KRAS/NRAS) genotyping of tumor (either primary tumor or metastasis) in all patients with mCRC. Patients with known KRAS- or NRAS-mutant tumors should not be treated with either cetuximab or panitumumab, either alone or in combination with other anticancer agents, because they have virtually no chance of benefit and the exposure to toxicity and expense cannot be justified. An exception to this is when cetuximab or panitumumab is given in combination with sotorasib or adagrasib for tumors with KRAS G12C mutation (see Systemic Therapy Options for KRAS G12C Mutation-Positive Disease in the Non-First-Line Setting, below). ASCO released a Provisional Clinical Opinion Update on extended *RAS* testing in patients with mCRC that is consistent with the NCCN Panel's recommendations. ⁶⁶⁶ A guideline on molecular biomarkers for CRC developed by the ASCP, CAP, AMP, and ASCO also recommends *RAS* testing consistent with the NCCN recommendations. ²⁸ Studies have reported that around 40% of mCRC have *KRAS* mutations in codons 12 and 13.667,668 Of these mutations, *KRAS* G12D was mostly commonly found (36%), followed by G12V (21.8%), and G13D (18.8%).668 *KRAS* G12C has been reported in around 17% of KRAS-mutated mCRC cases.669 Results are mixed as far as the prognostic value of *KRAS* mutations. In the Alliance N0147 trial, patients with *KRAS* exon 2-mutant tumors experienced a shorter DFS than patients with tumors without such mutations.670 Other studies have
also reported worse outcomes with *KRAS* mutations.667,671,672 At this time, however, the test is not recommended for prognostic reasons. In the AGITG MAX study, 10% of patients with tumors with wild-type KRAS exon 2 had mutations in KRAS exons 3 or 4 or in NRAS exons 2, 3, and 4.673 In the PRIME trial, 17% of 641 patients with tumors without KRAS exon 2 mutations were found to have mutations in exons 3 and 4 of KRAS or mutations in exons 2, 3, and 4 of NRAS. A predefined retrospective subset analysis of data from PRIME revealed that PFS (HR, 1.31; 95% CI, 1.07–1.60; P = .008) and OS (HR, 1.21; 95% CI, 1.01–1.45; P = .04) were decreased in patients with tumors with any KRAS or NRAS mutation who received panitumumab plus FOLFOX compared to those who received FOLFOX alone. 664 These results show that panitumumab does not benefit patients with KRAS- or NRAS-mutant tumors and may even have a detrimental effect in these patients. Updated analysis of the FIRE-3 trial (discussed in *Cetuximab or Panitumumab vs. Bevacizumab in First-line Therapy,* below) has been published.⁶⁷⁴ When all *RAS* (*KRAS/NRAS*) mutations were considered, PFS was significantly worse in patients with *RAS*-mutant tumors receiving FOLFIRI plus cetuximab than in patients with *RAS*-mutant tumors receiving FOLFIRI plus bevacizumab (6.1 vs. 12.2 months; P = .004). On the other hand, patients with *KRAS/NRAS* wild-type tumors showed no difference in PFS between the regimens (10.4 vs. 10.2 months; P = .54). This result indicates that cetuximab likely has a detrimental effect in patients with *KRAS*- or *NRAS*-mutant tumors. The FDA indication for panitumumab was, therefore, updated to state that panitumumab is not indicated for the treatment of patients with *KRAS* or *NRAS* mutation-positive disease in combination with oxaliplatin-based chemotherapy. 675 A retrospective study by De Roock et al⁶⁷⁶ raised the possibility that codon 13 mutations (G13D) in KRAS may not be absolutely predictive of nonresponse. Another retrospective study showed similar results. 662 However, more recent retrospective analysis of three randomized controlled phase III trials concluded that KRAS G13D-mutant tumors were unlikely to respond to panitumumab. 677 Results from a prospective phase II singlearm trial assessed the benefit of cetuximab monotherapy in 12 patients with refractory mCRC whose tumors contained KRAS G13D mutations. 678 The primary endpoint of 4-month progression-free rate was not met (25%), and no responses were seen. Preliminary results of the AGITG phase II ICE CREAM trial also failed to see a benefit of cetuximab monotherapy in patients with KRAS G13D-mutant tumors. 679 However, partial responses were reported after treatment with irinotecan plus cetuximab in 9% of this irinotecan-refractory population. A meta-analysis of eight RCTs came to the same conclusion: that tumors with KRAS G13D mutations are no more likely to respond to EGFR inhibitors than tumors with other KRAS mutations.680 The recommendation for *RAS* testing, at this point, is not meant to indicate a preference regarding regimen selection in the first-line setting. Rather, this early establishment of *RAS* status is appropriate to plan for the treatment continuum, so that the information may be obtained in a non–time-sensitive manner and the patient and provider can discuss the implications of a *RAS* mutation, if present, while other treatment options still exist. Note that because anti-EGFR agents have no role in the management of stage I, II, or III disease, *RAS* genotyping of CRCs at these earlier stages is not recommended. KRAS mutations are early events in CRC formation, and therefore a very tight correlation exists between mutation status in the primary tumor and the metastases. 681-683 For this reason, RAS genotyping can be performed on archived specimens of either the primary tumor or a metastasis. Fresh biopsies should not be obtained solely for the purpose of RAS genotyping unless an archived specimen from either the primary tumor or a metastasis is unavailable. The panel recommends that *KRAS*, *NRAS*, *and BRAF* gene testing be performed only in laboratories that are certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA-88) as qualified to perform highly complex molecular pathology testing.⁶⁸⁴ No specific testing methodology is recommended.⁶⁸⁵ The three genes can be tested individually or as part of an NGS panel. #### BRAF V600E Mutations Although mutations in *RAS* indicate a lack of response to EGFR inhibitors, many tumors containing wild-type *RAS* still do not respond to these therapies. Therefore, studies have addressed factors downstream of *RAS* as possible additional biomarkers predictive of response to cetuximab or panitumumab. Approximately 5% to 9% of CRCs are characterized by a specific mutation in the *BRAF* gene (V600E). 686,687 *BRAF* mutations are, for all practical purposes, limited to tumors that do not have *RAS* mutations. 686-688 Activation of the protein product of the non-mutated *BRAF* gene occurs downstream of the activated KRAS protein in the EGFR pathway. The mutated BRAF protein product is believed to be constitutively active, ⁶⁸⁹⁻⁶⁹¹ thereby putatively bypassing inhibition of EGFR by cetuximab or panitumumab. Limited data from unplanned retrospective subset analyses of patients with mCRC treated in the first-line setting suggest that although a *BRAF* V600E mutation confers a poor prognosis regardless of treatment, patients with disease characterized by this mutation may receive some benefit from the addition of cetuximab to front-line therapy. 687,692 A planned subset analysis of the PRIME trial also found that mutations in *BRAF* indicated a poor prognosis but were not predictive of benefit to panitumumab added to FOLFOX in first-line treatment of mCRC. 664 On the other hand, results from the randomized phase III Medical Research Council (MRC) COIN trial suggest that cetuximab may have no effect or even a detrimental effect in patients with *BRAF*-mutated tumors treated with CAPEOX or FOLFOX in the first-line setting. 688 In subsequent lines of therapy, retrospective evidence suggests that mutated BRAF is a marker of resistance to anti-EGFR therapy in the non–first-line setting of metastatic disease. ⁶⁹³⁻⁶⁹⁵ A retrospective study of 773 primary tumor samples from patients with chemotherapy-refractory disease showed that BRAF mutations conferred a significantly lower response rate to cetuximab (2/24; 8.3%) compared with tumors with wild-type BRAF (124/326; 38.0%; P = .0012). ⁶⁹⁶ Furthermore, data from the multicenter randomized controlled PICCOLO trial are consistent with this conclusion, with a suggestion of harm seen for the addition of panitumumab to irinotecan in the non–first-line setting in the small subset of patients with BRAF-mutant tumors. ⁶⁹⁷ A meta-analysis published in 2015 identified nine phase III trials and one phase II trial that compared cetuximab or panitumumab with standard therapy or best supportive care including 463 patients with metastatic colorectal tumors with *BRAF* mutations (first-line, second-line, or refractory settings).⁶⁹⁸ The addition of an EGFR inhibitor did not improve PFS (HR, 0.88; 95% CI, 0.67–1.14; P = .33), OS (HR, 0.91; 95% CI, 0.62–1.34; P = .63), or ORR (RR, 1.31; 95% CI, 0.83–2.08; P = .25) compared with control arms. Similarly, another meta-analysis identified seven RCTs and found that cetuximab and panitumumab did not improve PFS (HR, 0.86; 95% CI, 0.61–1.21) or OS (HR, 0.97; 95% CI, 0.67–1.41) in patients with BRAF-mutant tumors. In addition to its role as a predictive marker for BRAF-targeted therapy, it is clear that mutations in BRAF are a strong prognostic marker. 336,687,688,700-⁷⁰⁵ A prospective analysis of tissues from patients with stage II and III colon cancer enrolled in the PETACC-3 trial showed that the BRAF mutation is prognostic for OS in patients with MSI-L or MSS tumors (HR, 2.2; 95% CI, 1.4–3.4; P = .0003). 336 Moreover, an updated analysis of the CRYSTAL trial showed that patients with metastatic colorectal tumors carrying a BRAF mutation have a worse prognosis than those with the wild-type gene. 687 Additionally, BRAF mutation status predicted OS in the AGITG MAX trial, with an HR of 0.49 (95% CI, 0.33–0.73; P = .001).⁷⁰¹ The OS for patients with BRAF-mutant tumors in the COIN trial was 8.8 months, while those with KRAS exon 2 mutations and wild-type KRAS exon 2 tumors had OS times of 14.4 months and 20.1 months, respectively. 688 In addition, a secondary analysis of the N0147 and C-08 trials found that BRAF mutations were significantly associated with worse survival after recurrence of resected stage III colon cancer, with a stronger association for primary tumors located in the distal colon. 706 Results from a systematic review and meta-analysis of 21 studies, including 9885 patients, suggest that BRAF mutation may accompany specific high-risk clinicopathologic characteristics.707 In particular, an association was observed between BRAF mutation and proximal tumor location (OR, 5.22; 95% CI, 3.80–7.17; P < .001), T4 tumors (OR, 1.76; 95% CI, 1.16–2.66; P = .007), and poor differentiation (OR, 3.82; 95% CI, 2.71–5.36; P < .001). Overall, the panel believes that evidence increasingly suggests that *BRAF* V600E mutation makes response to panitumumab or cetuximab, as single agents or in combination with cytotoxic chemotherapy, highly unlikely, unless given as part of a BRAF inhibitor regimen (see *Encorafenib Plus Cetuximab or Panitumumab for BRAF V600E Mutation-Positive Disease in the Non–First-line Setting*, below). The panel recommends *BRAF* genotyping of tumor tissue (either primary tumor or metastasis⁷⁰⁸) at diagnosis of stage IV disease. Testing for the *BRAF* V600E mutation can be performed on formalin-fixed paraffin-embedded tissues and is usually performed by PCR amplification and direct DNA sequence analysis. Allelespecific PCR, NGS, or IHC are
other acceptable methods for detecting this mutation. #### HER2 Amplification/Overexpression HER2 is a member of the same family of signaling kinase receptors as EGFR and has been successfully targeted in breast cancer in both the advanced and adjuvant settings. HER2 is rarely amplified/overexpressed in CRC (approximately 3% overall), but the prevalence is higher in *RAS/BRAF*—wild type tumors (reported at 5%–14%).^{709,710} Specific molecular diagnostic methods have been proposed for HER2 testing in CRC,⁷¹¹ and HER2-targeted therapies are now recommended as subsequent therapy options in patients with tumors that are *RAS/BRAF* wild-type and have HER2 overexpression (see *Systemic Therapy Options for HER2-Amplified Disease*, below).^{709,712} Based on this, the NCCN Guidelines for Colon Cancer recommend testing for HER2 amplifications for patients with mCRC. If the tumor is already known to have a *KRAS/NRAS* or *BRAF* mutation, HER2 testing is not indicated. As HER2-targeted therapies are still under investigation, enrollment in a clinical trial is encouraged. Evidence does not support a prognostic role of HER2 overexpression.⁷¹³ In addition to its role as a predictive marker for HER2-targeted therapy, initial results indicate HER2 amplification/overexpression may be predictive of resistance to EGFR-targeting monoclonal antibodies. T10,714,715 For example, in a cohort of 98 patients with RAS/BRAF—wild type mCRC, median PFS on therapy without an EGFR inhibitor was similar regardless of HER2 status. T15 However, in therapy with an EGFR inhibitor, the PFS was significantly shorter in those with HER2 amplification compared with those without HER2 amplification (2.8 vs. 8.1 months; HR, 7.05; 95% CI, 3.4—14.9; P < .001). #### dMMR/MSI-H Status The percentage of stage IV colorectal tumors characterized as MSI-H (dMMR) ranged from 3.5% to 5.0% in clinical trials and was 6.5% in the Nurses' Health Study and Health Professionals Follow-up Study. 337,716,717 dMMR tumors contain thousands of mutations, which can encode mutant proteins with the potential to be recognized and targeted by the immune system. However, programmed death-ligands 1 and 2 (PD-L1 and PD-L2) on tumor cells can suppress the immune response by binding to programmed cell death protein 1 (PD-1) receptor on T-effector cells. This system evolved to protect the host from an unchecked immune response. Many tumors upregulate PD-L1 and thus evade the immune system.⁷¹⁸ It was therefore hypothesized that dMMR tumors may be sensitive to PD-1 inhibitors. Subsequently, this hypothesis was confirmed in clinical trials, leading to the addition of recommendations for checkpoint inhibitors for dMMR/MSI-H disease (see Checkpoint Inhibitor Immunotherapy for dMMR/MSI-H Disease in the First-Line Setting and Checkpoint Inhibitor Immunotherapy for dMMR/MSI-H Disease in the Non-First-Line Settings, below). The NCCN Guidelines for Colon Cancer recommend universal MMR or MSI testing for all patients with a personal history of colon or rectal cancer. In addition to its role as a predictive marker for immunotherapy use in the advanced CRC setting, MMR/MSI status can also help to identify individuals with Lynch syndrome (see Lynch Syndrome, above), and to inform adjuvant therapy decisions for patients with stage II disease (see *Microsatellite Instability* under *Adjuvant Chemotherapy for Resectable Colon Cancer*, above). #### NTRK Fusions Three NTRK genes encode the tropomyosin receptor kinase (TRK) proteins. TRK expression is primarily in the nervous system where these kinases help to regulate pain, perception of movement/position, appetite, and memory. NTRK gene fusions lead to overexpression of the TRK fusion protein, resulting in constitutively active downstream signaling.719 Studies have estimated that about 0.2% to 1% of CRCs carry NTRK gene fusions. 720,721 A study of 2314 CRC specimens, of which 0.35% had NTRK fusions, found that NTRK fusions were limited to cancers that were wildtype for KRAS, NRAS, and BRAF. Furthermore, a majority of the CRCs harboring NTRK fusions were also MMR-deficient. 722 Similarly, in a smaller study that aimed to characterize the molecular and clinical landscape of ALK, ROS1, and NTRK rearranged mCRC, 76.9% of NTRK rearranged tumors were MMR-deficient. 723 NTRK inhibitors are treatment options for patients with mCRC that is NTRK gene fusion-positive (see Larotrectinib or Entrectinib for NTRK Fusion-Positive Disease in the Non-First-Line Setting, below). #### RET Fusions RET is a transmembrane glycoprotein receptor-tyrosine kinase that plays an important role in the homeostasis of several different types of tissues, including neural, hematopoietic, and neuroendocrine tissues. The fusions lead to constitutively active, ligand-independent activation of the RET pathway. The fusions are implicated in the pathogenesis of several solid tumors including thyroid and non-small-cell lung cancer, as well as in a small subset (<1%) of CRCs. A systematic review analyzed data from 24 RET gene fusion-positive mCRC cases from three screening sources and found RET gene fusions to be more prevalent with increased age (median age, 66 vs. 60 years; P = .052), in those with ECOG PS of 1–2 compared to those with ECOG PS of 0 (90 % vs. 50%; P = .02), in those with right-sided tumors (55% vs. 32%; P = .013), and in those with unresected primary tumors (58% vs. 21%; P < .001). All respective samples compared to represent the respective samples (48% vs. 7%; P < .001). All respective RET kinase inhibitor, selpercation, is a treatment option for patients with mCRC that is respective representation for restance P = .001 (see Selpercation). #### Tumor Mutational Burden Tumor mutational burden (TMB) measures the total amount of somatic coding mutations within a given coding area of the tumor genome and can be quantified using NGS techniques. 727 Research has identified TMB as a potential biomarker for response to immunotherapy and pembrolizumab has been FDA-approved for patients with unresectable or metastatic, TMB-high (TMB-H) solid tumors that have progressed following prior treatment and have no satisfactory alternative treatment options. 728 TMB-H is defined in the label as 10 or more mutations/megabase by an FDAapproved test. This approval was based on results of the phase 2, KEYNOTE-158 study that enrolled patients with advanced solid tumors.⁷²⁹ Patients with TMB-H tumors who were treated with pembrolizumab had an ORR of 29% compared to 6% of those with non-TMB-H tumors. However, of the 796 patients who were evaluated for efficacy on this study, none had CRC. An abstract on the phase II TAPUR basket study reported results for 27 patients with TMB-H advanced CRC who were treated with pembrolizumab.⁷³⁰ One partial response and seven cases with stable disease for at least 16 weeks were reported, for a disease control rate of 28% and an ORR of 4%. Another abstract on the TAPUR study, reporting results for 12 patients with TMB-H advanced CRC treated with nivolumab plus ipilimumab, concluded that the combination therapy does not have sufficient clinical activity in MSS, TMB-H CRC.⁷³¹ Based on the limited data in the CRC population, the NCCN Panel does not currently recommend TMB biomarker testing, unless measured as part of a clinical trial. #### Severe Fluoropyrimidine-Associated Toxicity Dihydropyrimidine dehydrogenase (DPYD) is the enzyme that catabolizes fluoropyrimidines. ^{732,733} Certain variants of the *DPYD* gene result in a truncated protein, which may lead to prolonged systemic exposure to fluoropyrimidine ⁷³⁴⁻⁷³⁸ and may herald an increased risk of severe toxicity. ⁷³⁹⁻⁷⁴¹ The actual incidence of specific gene alterations of these variants across different populations is unknown. A systematic review of the published literature found that, across 13,929 patients, such *DPYD* variants (hetero- or homozygous) were identified in 4.1% of patients. ⁷⁴¹ Treatment-related deaths were reported in 0.1% in patients without identified *DPYD* variants and in 2.3% of those with known *DPYD* variants (95% CI, 1.3%–3.9%). While not all patients known to have *DPYD* variants are necessarily at increased risk of toxicity, such individuals could receive dose reductions or could be offered non-fluoropyrimidine regimens. Prospective studies have shown *DPYD* genotyping to be feasible in clinical practice and that dose reductions in the setting of variant DPYD genes diminish the risk of substantial toxicity. In a prospective study, 22 patients with the $DPYD^*2A$ variant allele (of 2038 patients screened; 1.1%) received dosereduced fluoropyrimidine which led to a significant reduction in the risk of grade \geq 3 toxicity compared with historic controls (28% vs. 73%; P < .001). None of the patients died from drug toxicity, compared with a 10% death rate in the historical control group. However, there was great heterogeneity in the specific treatment regimens and dosing decisions within the treated cohorts. Capecitabine was the fluoropyrimidine given to the majority of patients, but the various combinations also included other chemotherapeutics as well as bolus and infusional 5-FU. Also, the protocol left the specific dosing decision to the physician and fluoropyrimidine dose reductions ranged from 17% to 91% (median 48%).⁷⁴⁴ A cost-effectiveness modeling within this study concluded that pre-treatment testing was cost-effective, largely based on the assumptions that intensive care unit (ICU) hospitalizations and the cost of uridine triacetate (approximately \$75,000 per cycle) as a rescue treatment in very ill patients could be avoided. Efficacy was not an end-point in this study. Another prospective study identified 85 patients with any of the four most common *DPYD* variant alleles (8% of 1103 patients screened) who received an initial fluoropyrimidine dose reduction of either 25% or 50% depending on the specific allele.⁷⁴³ This study reported that the RR of severe
fluoropyrimidine-related toxicity was reduced for genotype-guided dosing for all studied alleles compared to the historical cohorts. In an effort to standardize the dose adjustments indicated by the specific variants, the Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing provides dosing recommendations for 5-FU and 5-FU prodrug-based regimens based on *DPYD*.745 A reduced starting dose of fluoropyrimidines is recommended for intermediate metabolizers (those who are heterozygous for *DPYD* decreased/no function variants). Some patients with decreased/no function variants tolerate normal doses of fluoropyrimidines, thus the CPIC Guidelines recommend increasing doses in subsequent cycles for patients with minimal or no toxicity in the first two cycles of treatment. Further dose reduction is recommended for those who do not tolerate the reduced starting dose. For those classified as poor metabolizers, the CPIC Guidelines recommend avoiding fluoropyrimidines. These guidelines reflect common sense dose adjustments rather than methodically-derived dosing based on actual pharmacokinetics. Also, the dose adjustment paradigm does not distinguish between IV bolus or infusional 5-FU or the pro-drug capecitabine. The pharmacokinetics of IV 5-FU vary greatly based on the rate of infusion and there are many more factors involved in determining an individual's tolerance of capecitabine, which is uniformly used at reduced dose in the United States compared to Europe.⁷⁴⁶ While dose adjustment of fluoropyrimidines based on *DPYD* genotype has been shown to diminish toxicity, it is not certain that dose reductions do not result in inferior efficacy. This is especially relevant in those patients who are receiving fluoropyrimidines as part of an adjuvant regimen with curative intent. Because fluoropyrimidines are a pillar of therapy in CRC and it is not known with certainty that given *DPYD* variants are associated with this risk and/or that dose adjustments do not impact efficacy, the NCCN Panel does not recommend universal pretreatment *DPYD* genotyping at this time. However, as with all guideline decisions, the panel reviews all new data and considers input from stakeholders in real time and guidelines are continuously reassessed. Uridine triacetate is an orally administered pyrimidine analog that is believed to compete for receptors on normal cells and, as such, decreases the toxic effects of excessive fluoropyrimidines. It is FDA approved for the emergency treatment of both adult and pediatric patients exhibiting early-onset, severe or life-threatening toxicity within 96 hours of the completion of 5-FU or capecitabine administration. Uridine triacetate was evaluated in two single-arm, multicenter open-label trials in which a total of 135 patients were treated with uridine triacetate following 5-FU or capecitabine overdose or upon early onset of severe toxicities. He studies, a total of 96% of the patients treated with uridine triacetate survived and exhibited rapid reversal of severe cardiac and neurological toxicities. Thirty-eight percent of these patients were able to resume chemotherapy within 30 days, with a mean time to resumption of chemotherapy of 19.6 days. The importance of administration of uridine triacetate within the first 96 hours must be noted. While most patients on these trials were treated within the first 96 hours, 50% of the four patients who were treated beyond 96 hours died.⁷⁴⁹ #### Regimens Not Recommended The consensus of the panel is that infusional 5-FU regimens seem to be less toxic than bolus regimens and that any bolus regimen of 5-FU is inappropriate when administered with either irinotecan or oxaliplatin. Therefore, the panel no longer recommends using the IFL regimen (which was shown to be associated with increased mortality and decreased efficacy relative to FOLFIRI in the BICC-C trial^{587,750} and inferior to FOLFOX in the Intergroup trial⁷⁵¹) at any point in the therapy continuum. 5-FU in combination with irinotecan or oxaliplatin should be administered via an infusional biweekly regimen,³⁰⁹ or capecitabine can be used with oxaliplatin.⁷⁵² The Dutch CAIRO trial showed promising results for the use of capecitabine/irinotecan (CapeIRI) in the first-line treatment of mCRC.622 However, in the American BICC-C trial, CapelRI showed worse PFS than FOLFIRI (5.8 vs. 7.6 months; P = .015), and was considerably more toxic with higher rates of severe vomiting, diarrhea, and dehydration.⁵⁸⁷ In this trial, the CapelRI arm was discontinued. The EORTC study 40015 also compared FOLFIRI with CapeIRI and was discontinued after enrollment of only 85 patients because seven deaths were determined to be treatmentrelated (five in the CapelRI arm). 753 Several European studies have assessed the safety and efficacy of CapelRI in combination with bevacizumab (CapelRI/Bev) in the first-line metastatic setting. A small Spanish study of 46 patients who received CapelRI/Bev showed encouraging results with good tolerability.⁷⁵⁴ A similar trial by the Spanish group found similar results in 77 patients. 755 Preliminary results from a randomized phase II study conducted in France were presented in 2009, showing a manageable toxicity profile for CapelRI/Bev in this setting. 756 Additionally, a randomized phase III HeCOG trial compared CapeIRI/Bev and FOLFIRI/Bev in the first-line metastatic setting and found no significant differences in efficacy between the regimens. The Despite the differing toxicity profiles reported, the toxicities seemed to be reasonable in both arms. Finally, a randomized phase II study of the AIO colorectal study group compared CAPEOX plus bevacizumab with a modified CapeIRI regimen plus bevacizumab and found similar 6-month PFS and similar toxicities. Because of the concerns about the toxicity of the CapeIRI combination, which may differ between patients of American and European descent, the panel does not recommend CapeIRI or CapeIRI/Bev for the first-line treatment of mCRC. Other drug combinations that have produced negative results in phase III trials for the treatment of advanced CRC include sunitinib plus FOLFIRI, cetuximab plus brivanib, erlotinib plus bevacizumab, cediranib plus FOLFOX/CAPEOX, and atezolizumab plus cobimetinib.⁷⁵⁹⁻⁷⁶³ These regimens are not recommended for the treatment of patients with CRC. Results from two randomized phase III trials have shown that combination therapy with more than one biologic agent is not associated with improved outcomes and can cause increased toxicity. Te4,765 In the PACCE trial, the addition of panitumumab to a regimen containing oxaliplatin- or irinotecan-based chemotherapy plus bevacizumab was associated with significantly shorter PFS and higher toxicity in both *KRAS* exon 2 wild-type and mutant gene groups. Similar results were observed in the CAIRO2 trial with the addition of cetuximab to a regimen containing capecitabine, oxaliplatin, and bevacizumab. Therefore, the panel strongly recommends against the use of therapy involving the concurrent combination of an anti-EGFR agent (cetuximab or panitumumab) and an anti-vascular endothelial growth factor (VEGF) agent (bevacizumab). #### First-line Systemic Therapy #### FOLFOX for First-line Therapy The addition of bevacizumab is an option when FOLFOX is chosen as initial therapy, 589,766 as is the addition of panitumumab or cetuximab for patients with disease characterized by wild-type *KRAS* exon 2 (see discussions on *Bevacizumab; Cetuximab and Panitumumab: KRAS, NRAS, and BRAF Status* and *Primary Tumor Sidedness;* and *Cetuximab or Panitumumab vs. Bevacizumab in First-line Therapy*, below).657,767,768 With respect to the treatment of metastatic disease with bevacizumab-containing regimens or chemotherapy without an additional biologic agent, panel consensus is that FOLFOX and CAPEOX can be used interchangeably. Results from a registry-based cohort analysis of greater than 2000 patients support the equivalence of these combinations.769 Use of oxaliplatin has been associated with an increased incidence of peripheral sensory neuropathy. 770 Results of the OPTIMOX1 study showed that a "stop-and-go" approach using oxaliplatin-free intervals resulted in decreased neurotoxicity but did not affect OS in patients receiving FOLFOX as initial therapy for metastatic disease.⁷⁷¹ Other trials have also addressed the question of treatment breaks, with or without maintenance therapy, and found that toxicity can be minimized with minimal or no effect on survival. 772 A meta-analysis of RCTs also concluded that intermittent delivery of systemic therapy does not compromise OS compared to continuous treatment.773 Therefore, the panel recommends adjusting the schedule/timing of the administration of this drug as a means of limiting this AE. Discontinuation of oxaliplatin from FOLFOX or CAPEOX should be strongly considered after 3 months of therapy, or sooner for unacceptable neurotoxicity, with other drugs in the regimen maintained for the entire 6 months or until time of tumor progression. Patients experiencing neurotoxicity on oxaliplatin should not receive subsequent oxaliplatin therapy until and unless they experience near-total resolution of that neurotoxicity. In the phase II OPTIMOX2 trial, patients were randomized to receive either an OPTIMOX1 approach (discontinuation of oxaliplatin after 6 cycles of FOLFOX to prevent or reduce neurotoxicity with continuance of 5-FU/LV followed by reintroduction of oxaliplatin on disease progression) or an induction FOLFOX regimen (6 cycles) followed by discontinuation of all chemotherapy until tumor progression reached baseline, followed by reintroduction of FOLFOX.⁷⁷⁴ Results of the study showed no difference in OS for patients receiving the OPTIMOX1 approach compared with those undergoing an early, pre-planned, chemotherapy-free interval (median OS, 23.8 vs. 19.5 months; P = .42).
However, the median duration of disease control, which was the primary endpoint of the study, reached statistical significance at 13.1 months in patients undergoing maintenance therapy and 9.2 months in patients with a chemotherapy-free interval (P = .046). The CONcePT trial also tested an intermittent oxaliplatin approach in patients with advanced CRC and found that it improved acute peripheral sensory neuropathy (P = .037) over continuous oxaliplatin.⁷⁷⁵ The addition of oxaliplatin breaks also improved time to treatment failure (HR, 0.581; P = .0026) and time to tumor progression (HR, 0.533; P = .047). Early data suggested that calcium/magnesium infusion might prevent oxaliplatin-related neurotoxicity. 776-783 However, the phase III randomized, double-blind N08CB study, which randomized 353 patients with colon cancer receiving adjuvant FOLFOX to calcium/magnesium infusion or placebo, found that calcium/magnesium did not reduce cumulative sensory neurotoxicity. 784 The panel therefore recommends against calcium/magnesium infusions for this purpose. #### CAPEOX for First-line Therapy The combination of capecitabine and oxaliplatin, known as CAPEOX or XELOX, has been studied as an active first-line therapy for patients with mCRC.⁷⁸⁵⁻⁷⁸⁹ In a randomized phase III trial comparing CAPEOX and FOLFOX in 2034 patients, the regimens showed similar median PFS intervals of 8.0 and 8.5 months, respectively, and CAPEOX was determined to be noninferior to FOLFOX as first-line treatment of metastatic disease. Meta-analyses of RCTs also showed that CAPEOX and FOLFOX had similar benefits for patients with mCRC. 790,791 Use of oxaliplatin has been associated with an increased incidence of peripheral sensory neuropathy (see FOLFOX, above). P2 Discontinuation of oxaliplatin from FOLFOX or CAPEOX should be strongly considered after 3 months of therapy (the OPTIMOX1 approach proach properties of unacceptable neurotoxicity, with other drugs in the regimen maintained until tumor progression. A Turkish Oncology Group Trial showed that this stop-and-go approach is safe and effective in first-line therapy with CAPEOX/bevacizumab. The randomized FOCUS4-N trial compared capecitabine maintenance therapy to active monitoring in patients responding to first-line therapy. While there was no significant difference in OS between the two groups (15.2 months in the capecitabine arm vs 14.8 months in the active monitoring arm [adjusted HR, 0.93; P = .66]), median PFS was longer in the capecitabine arm (3.88 months compared to 1.87 months in the active monitoring arm [adjusted HR, 0.40; P < .0001]). Patients experiencing neurotoxicity on oxaliplatin should not receive subsequent oxaliplatin therapy until and unless they experience near-total resolution of that neurotoxicity. The panel recommends against the use of calcium/magnesium infusion to prevent oxaliplatin-related neurotoxicity.⁷⁸⁴ Regarding the toxicities associated with capecitabine use, the panel noted that: 1) patients with diminished creatinine clearance may accumulate levels of the drug, and therefore may require dose modification⁷⁹⁵; 2) the incidence of hand-foot syndrome was increased for patients receiving capecitabine-containing regimens versus either bolus or infusional regimens of 5-FU/LV⁷⁶⁶; and 3) patients of North American descent may experience a higher incidence of AEs with certain doses of capecitabine compared with patients from other countries. These toxicities may necessitate modifications in the dosing of capecitabine. Patients on capecitabine should be monitored closely so that dose adjustments can be made at the earliest signs of certain side effects, such as hand-foot syndrome. Interestingly, an analysis of patients from the AIO's KRK-0104 trial and the Mannheim rectal cancer trial found that capecitabine-related hand-foot skin reactions were associated with an improved OS (75.8 vs. 41.0 months; P = .001; HR, 0.56). The addition of bevacizumab is an option if CAPEOX is chosen as initial therapy. 589,766 With respect to the treatment of metastatic disease with bevacizumab-containing regimens or chemotherapy without an additional biologic agent, the consensus of the panel is that FOLFOX and CAPEOX can be used interchangeably. Results from a registry-based cohort analysis of greater than 2000 patients support the equivalence of these combinations. 769 #### FOLFIRI for First-line Therapy Evidence for the comparable efficacy for FOLFOX and FOLFIRI comes from a crossover study in which patients received either FOLFOX or FOLFIRI as initial therapy and were then switched to the other regimen at disease progression. Similar response rates and PFS times were obtained when these regimens were used as first-line therapy. Further support for this conclusion has come from results of a phase III trial comparing the efficacy and toxicity of FOLFOX and FOLFIRI regimens in previously untreated patients with mCRC. No differences were observed in response rate, PFS times, and OS between the treatment arms. A randomized phase III study compared FOLFIRI to 5-FU/LV in first-line treatment of patients ≥75 years with mCRC.⁷⁹⁹ In this population of patients, grade 3–4 toxicities were increased with the addition of irinotecan (52.2% vs. 76.3%), without an improvement in PFS or OS. Toxicities associated with irinotecan include both early and late forms of diarrhea, dehydration, and severe neutropenia.800,801 Irinotecan is inactivated by the enzyme uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), which is also involved in converting substrates such as bilirubin into more soluble forms through conjugation with certain glycosyl groups. Deficiencies in UGT1A1 can be caused by certain genetic polymorphisms and can result in conditions associated with accumulation of unconjugated hyperbilirubinemias, such as types I and II of the Crigler-Najjar and Gilbert syndromes. Thus, irinotecan should be used with caution and at a decreased dose in patients with Gilbert syndrome or elevated serum bilirubin. Similarly, certain genetic polymorphisms in the gene encoding for UGT1A1 can result in a decreased level of glucuronidation of the active metabolite of irinotecan, resulting in an accumulation of the drug and increased risk for toxicity,801-803 although severe irinotecan-related toxicity is not experienced by all patients with these polymorphisms. 803 Results from a dose-finding and pharmacokinetic study suggest that dosing of irinotecan should be individualized based on UGT1A1 genotype.804 The maximum tolerated dose of intravenous irinotecan every 3 weeks was 850 mg, 700 mg, and 400 mg in patients with the *1/*1, *1/*/28, and *28/*28 genotypes, respectively. Commercial tests are available to detect the UGT1A1*28 allele, which is associated with decreased gene expression and, hence, reduced levels of UGT1A1 expression. Also, a warning was added to the label for irinotecan indicating that a reduced starting dose of the drug should be used in patients known to be homozygous for UGT1A1*28.800 A practical approach to the use of UGT1A1*28 allele testing with respect to patients receiving irinotecan has been presented,803 although guidelines for use of this test in clinical practice have not been established. Furthermore, UGT1A1 testing on patients who experience irinotecan toxicity is not recommended, because they will require a dose reduction regardless of the UGT1A1 test result. Results from a phase IV trial in 209 patients with mCRC who received bevacizumab in combination with FOLFIRI as first-line therapy showed that this combination was as effective and well-tolerated as bevacizumab with other 5-FU-based therapies. A phase III trial in Japan also showed that FOLFIRI plus bevacizumab is noninferior to mFOLFOX6 plus bevacizumab with regard to PFS. Therefore, the addition of bevacizumab to FOLFIRI is recommended as an option for initial therapy; alternatively, cetuximab or panitumumab (only for left-sided tumors characterized by wild-type RAS/BRAF) can be added to this regimen (see discussions on Bevacizumab; Cetuximab and Panitumumab: KRAS, NRAS, and BRAF Status and Primary Tumor Sidedness; and Cetuximab or Panitumumab vs. Bevacizumab in First-line Therapy, below). 663,687,767,807,808 Infusional 5-FU/LV and Capecitabine for First-line Therapy For patients with impaired tolerance to aggressive initial therapy, the guidelines recommend infusional 5-FU/LV or capecitabine with or without bevacizumab as an option. 309,752,766,809-811 Patients with metastatic cancer with no improvement in functional status after this less intensive initial therapy should receive best supportive care. Patients showing improvement in functional status should be treated with one of the options specified for initial therapy for advanced or metastatic disease. Toxicities associated with capecitabine use are discussed earlier (see CAPEOX). In a pooled analysis of results from two randomized clinical trials involving patients with a potentially curative resection of liver or lung metastases randomly assigned to either postoperative systemic chemotherapy with 5-FU/LV or observation alone after surgery, the median PFS was 27.9 months in the chemotherapy arm and 18.8 months for those undergoing surgery alone (HR, 1.32; 95% CI, 1.00–1.76; P = .058), with no significant difference in OS.⁸¹² Results were published from the open-label phase III AVEX trial, in which 280 patients ≥70 years were randomized to capecitabine with or without bevacizumab.⁸¹³ The trial met its primary endpoint, with the addition of bevacizumab giving a significantly improved median PFS (9.1 vs. 5.1 months; HR, 0.53; 95% CI, 0.41–0.69; *P* < .0001). #### FOLFOXIRI or FOLFIRINOX for First-line Therapy Use of FOLFOXIRI compared with FOLFIRI as initial therapy for the treatment of metastatic disease has been investigated in two randomized phase III trials. 578,579 In a trial by the GONO group, statistically significant improvements in PFS (9.8 vs. 6.9 months; HR,
0.63; P = .0006) and median OS (22.6 vs. 16.7 months; HR, 0.70; P = .032) were observed in the FOLFOXIRI arm, 578 although no OS difference was seen between treatment arms in the HORG study (median OS was 19.5 and 21.5 months for FOLFIRI and FOLFOXIRI, respectively; P = .337). 579 Both studies showed some increased toxicity in the FOLFOXIRI arm (eg, significant increases in neurotoxicity and neutropenia, 578 diarrhea, alopecia, and neurotoxicity 579), but no differences in the rate of toxic death were reported in either study. Long-term outcomes of the GONO trial with a median follow-up of 60.6 months were later reported. 580 The improvements in PFS and OS were maintained. The panel includes the possibility of adding bevacizumab to FOLFIRINOX for initial therapy of patients with unresectable metastatic disease. Results of the GONO group's phase III TRIBE trial showed that FOLFOXIRI/bevacizumab significantly increased PFS (12.1 vs. 9.7 months; HR, 0.75; 95% CI, 0.62–0.90; P = .003) and response rate (65% vs. 53%; P = .006) compared to FOLFIRI/bevacizumab in patients with unresectable mCRC. ⁸¹⁴ Subgroup analyses indicated that no benefit to the addition of oxaliplatin was seen in patients who received prior adjuvant therapy (64% of cases included oxaliplatin in the adjuvant regimen). Diarrhea, stomatitis, neurotoxicity, and neutropenia were significantly more prevalent in the FOLFOXIRI arm. In an updated analysis on the TRIBE trial, investigators reported the median OS at 29.8 months (95% CI, 26.0–34.3) in the FOLFOXIRI plus bevacizumab arm and 25.8 months (95% CI, 22.5–29.1) in the FOLFIRI plus bevacizumab arm (HR, 0.80; 95% CI, 0.65–0.98; P = .03).815 The randomized, phase III TRIBE2 compared first-line FOLFOXIRI plus bevacizumab to a sequential strategy of first-line FOLFOX plus bevacizumab followed by FOLFIRI plus bevacizumab after progression in 679 patients with unresectable, previously untreated mCRC. ⁸¹⁶ The primary endpoint of median PFS was 19.2 months for FOLFOXIRI compared to 16.4 months for the sequential strategy (HR, 0.74; 95% CI, 0.63–0.88; P = .0005). Serious AEs were reported in 25% of patients in the FOLFOXIRI group compared to 17% in the sequential therapy group. Results from the randomized phase II OLIVIA trial, which compared mFOLFOX6/bevacizumab to FOLFOXIRI/bevacizumab in patients with unresectable colorectal liver metastases, were also reported.⁸¹⁷ Improvement in R0 resection rate was seen in the FOLFOXIRI/bevacizumab arm (49% vs. 23%; 95% CI, 4%–48%) and in the primary endpoint of overall (R0/R1/R2) resection rate (61% vs. 49%; 95% CI, -11% to 36%). Other phase II trials, including CHARTA and STEAM, have also reported improved outcomes for FOLFOXIRI plus bevacizumab when compared to a chemotherapy doublet plus bevacizumab for first-line treatment of mCRC.^{592,818} A pooled analysis of TRIBE and TRIBE2⁸¹⁹ and a meta-analysis of individual patient data from CHARTA, OLIVIA, STEAM, TRIBE, and TRIBE2⁵⁹² reached similar conclusions as the clinical trials. These analyses concluded that first-line treatment with FOLFOXIRI plus bevacizumab yields significantly better outcomes, albeit at the expense of higher toxicity, compared to sequential treatment with chemotherapy doublets in combination with bevacizumab. An additional pooled analysis of TRIBE and TRIBE2⁸²⁰ evaluated toxicity based on age with FOLFOXIRI plus bevacizumab and found lower risks of grade 3 or higher neutropenia (P=.07), diarrhea (P=.04), and asthenia (P=.008) in patients aged <50 years but higher rates of any grade nausea (P<.01) and vomiting (P<.01) in this age group. There was no impact on PFS (P=.81), OS (P=.44), or ORR (P=.50) based on age. Based on these results, the NCCN Panel strongly recommends first-line FOLFIRINOX for patients with excellent performance status who can withstand the higher toxicity of the triplet regimen. The panel recommends FOLFIRINOX instead of FOLFOXIRI because FOLFOXIRI uses a high dose of fluorouracil (3200 mg/m² over 48 hours). Patients in the United States have been shown to have greater toxicity with fluorouracil. The dose of fluorouracil (2400 mg/m² over 46 hours) is a starting dose consistent with the dose recommended in FOLFOX or FOLFIRI and should be strongly considered for patients in the United States. #### Bevacizumab for First-line Therapy Bevacizumab is a humanized monoclonal antibody that blocks the activity of VEGF, a factor that plays an important role in tumor angiogenesis. ⁵⁹³ The NCCN Panel notes that FDA-approved biosimilars may be substituted for bevacizumab wherever the therapy is recommended within these Guidelines (see *Biosimilars*, above, for more information). Pooled results from several randomized phase II studies have shown that the addition of bevacizumab to first-line 5-FU/LV improved OS in patients with unresectable mCRC compared with those receiving these regimens without bevacizumab. ^{588,821,822} A combined analysis of the results of these trials showed that the addition of bevacizumab to 5-FU/LV was associated with a median survival of 17.9 versus 14.6 months for regimens consisting of 5-FU/LV or 5-FU/LV plus irinotecan without bevacizumab (*P* = .008). ⁸¹⁰ A study of previously untreated patients receiving bevacizumab plus IFL also provided support for the inclusion of bevacizumab in initial therapy. ⁵⁸⁸ In that pivotal trial, a longer survival time was observed with the use of bevacizumab (20.3 vs. 15.6 months; HR, 0.66; P < .001). Results have also been reported from a large, head-to-head, randomized, double-blind, placebo-controlled, phase III study (NO16966) in which CAPEOX (capecitabine dose, 1000 mg/m², twice daily for 14 days) with bevacizumab or placebo was compared with FOLFOX with bevacizumab or placebo in 1400 patients with unresectable metastatic disease. 589 The addition of bevacizumab to oxaliplatin-based regimens was associated with a more modest increase of 1.4 months in PFS compared with these regimens without bevacizumab (HR, 0.83; 97.5% CI, 0.72-0.95; P =.0023), and the difference in OS, which was also a modest 1.4 months, did not reach statistical significance (HR, 0.89; 97.5% CI, 0.76–1.03; P = .077).589 Researchers have suggested that differences observed in crossstudy comparisons of NO16966 with other trials might be related to differences in the discontinuation rates and durations of treatment between trials, although these hypotheses are conjectural. 589 However, in this 1400-patient randomized study, absolutely no difference in response rate was seen with and without bevacizumab, and this finding could not have been influenced by the early withdrawal rates, which would have occurred after the responses would have occurred. Results of subset analyses evaluating the benefit of adding bevacizumab to either FOLFOX or CAPEOX indicated that bevacizumab was associated with improvements in PFS when added to CAPEOX but not FOLFOX.589 The combination of FOLFIRI and bevacizumab in the first-line treatment of advanced CRC has been studied, although no RCTs have compared FOLFIRI with and without bevacizumab. A systematic review with a pooled analysis (29 prospective and retrospective studies, 3502 patients) found that the combination gave a response rate of 51.4%, a median PFS of 10.8 months (95% CI, 8.9–12.8), and a median OS of 23.7 months (95% CI, 18.1–31.6).⁸²³ FOLFIRINOX with bevacizumab is also an accepted combination (see *FOLFOXIRI or FOLFIRINOX*, above), although no RCTs have compared FOLFIRINOX with and without bevacizumab. A prospective observational cohort study (ARIES) included 1550 patients who received first-line therapy with bevacizumab with chemotherapy for mCRC and 482 patients treated with bevacizumab in second-line.⁸²⁴ Median OS was 23.2 months (95% CI, 21.2–24.8) for the first-line cohort and 17.8 months (95% CI, 16.5–20.7) in the second-line group. A similar cohort study (ETNA) of first-line bevacizumab use with irinotecan-based therapy reported a median OS of 25.3 months (95% CI, 23.3–27.0).⁸²⁵ Several meta-analyses have shown a benefit for the use of bevacizumab in first-line therapy for mCRC. 826-834 A meta-analysis of six randomized clinical trials (3060 patients) that assessed the efficacy of bevacizumab in first-line treatment of mCRC found that bevacizumab gave a PFS (HR, 0.72; 95% CI, 0.66–0.78; P < .00001) and OS (HR, 0.84; 95% CI, 0.77–0.91; P < .00001) advantage. 835 However, subgroup analyses showed that the advantage was limited to irinotecan-based regimens. In addition, an analysis of the SEER-Medicare database found that bevacizumab added a modest improvement to OS of patients with stage IV CRC diagnosed between 2002 and 2007 (HR, 0.85; 95% CI, 0.78–0.93). 836 The survival advantage was not evident when bevacizumab was combined with oxaliplatin-based chemotherapy, but was evident in irinotecan-based regimens. Limitations of this analysis have been discussed, 837,838 but, overall, the addition of bevacizumab to first-line chemotherapy appears to offer a modest clinical benefit. A meta-analysis of RCTs showed that the addition of bevacizumab to chemotherapy is associated with a higher incidence of treatment-related mortality than chemotherapy alone (RR, 1.33; 95% CI, 1.02–1.73; P = .04), with hemorrhage (23.5%), neutropenia (12.2%), and GI perforation (7.1%) being the most common causes of fatality.⁸³⁹ Venous thromboembolisms, on the other hand, were not increased in patients receiving bevacizumab with chemotherapy versus those receiving chemotherapy alone.840 Another meta-analysis showed that bevacizumab was associated with a significantly higher risk of hypertension, GI hemorrhage, and perforation, although the overall risk for hemorrhage and perforation is guite low.841 The risk of stroke and other arterial events is increased in patients receiving bevacizumab, especially in those ≥65 years. GI perforation is a rare but important side effect of bevacizumab therapy in patients with CRC.585,766 Extensive
prior intra-abdominal surgery, such as peritoneal stripping, may predispose patients to GI perforation. A small cohort of patients with advanced ovarian cancer had an unacceptably high rate of GI perforation when treated with bevacizumab.842 This result illustrated that peritoneal debulking surgery may be a risk factor for GI perforation, whereas the presence of an intact primary tumor does not seem to increase the risk for GI perforation. The FDA approved a safety label warning of the risk for necrotizing fasciitis, sometimes fatal and usually secondary to wound healing complications, GI perforation, or fistula formation after bevacizumab use. 593 Use of bevacizumab may interfere with wound healing. 585,593,766 A retrospective evaluation of data from two randomized trials of 1132 patients undergoing chemotherapy with or without bevacizumab as initial therapy for mCRC indicated that the incidence of wound healing complications was increased for the group of patients undergoing a major surgical procedure while receiving a bevacizumab-containing regimen compared with the group receiving chemotherapy alone while undergoing major surgery (13% vs. 3.4%, respectively; P = .28). 585 However, when chemotherapy plus bevacizumab or chemotherapy alone was administered after surgery, with a delay between surgery and bevacizumab administration of at least 6 weeks, the incidence of wound healing complications in either group of patients was low (1.3% vs. 0.5%; P = .63). Similarly, results of a single-center, nonrandomized phase II trial of patients with potentially resectable liver metastases showed no increase in bleeding or wound complications when the bevacizumab component of CAPEOX plus bevacizumab therapy was stopped 5 weeks before surgery (ie, bevacizumab excluded from the sixth cycle of therapy). Addition, no significant differences in bleeding, wound, or hepatic complications were seen in a retrospective trial evaluating the effects of preoperative bevacizumab stopped at 8 weeks or less versus at more than 8 weeks before resection of liver colorectal metastases in patients receiving oxaliplatin- or irinotecan-containing regimens. The panel recommends an interval of at least 6 weeks (which corresponds to two half-lives of the drug 593) between the last dose of bevacizumab and any elective surgery. Additionally, re-initiation of bevacizumab should be delayed at least 6 to 8 weeks postoperatively. Preclinical studies suggested that cessation of anti-VEGF therapy might be associated with accelerated recurrence, more aggressive tumors on recurrence, and increased mortality. A retrospective meta-analysis of five placebo-controlled, randomized phase III trials including 4205 patients with metastatic colorectal, breast, renal, or pancreatic cancer found no difference in time to disease progression and mortality with discontinuation of bevacizumab versus discontinuation of placebo. Although this meta-analysis has been criticized, Although the results are supported by results from the NSABP Protocol C-08 trial. This trial included patients with stage II and stage III CRC, and no differences in recurrence, mortality, or mortality 2 years after recurrence were seen between patients receiving bevacizumab versus patients in the control arm. These results suggest that no "rebound effect" is associated with bevacizumab use. Cetuximab or Panitumumab for First-line Therapy in KRAS/NRAS Wild-Type Disease Cetuximab and panitumumab are monoclonal antibodies directed against EGFR that inhibit its downstream signaling pathways. Panitumumab is a fully human monoclonal antibody, whereas cetuximab is a chimeric monoclonal antibody.⁸⁴⁸ Cetuximab and panitumumab have been studied in combination with FOLFIRI and FOLFOX as initial therapy options for treatment of mCRC. The randomized, phase II PLANET-TTD trial comparing patients treated with panitumumab plus either FOLFOX or FOLFIRI found no significant differences in efficacy between the two regimens.⁸⁴⁹ Meta-analyses of RCTs have concluded that EGFR inhibitors provide a clear clinical benefit in the treatment in patients with *RAS* wild-type mCRC. 665,850 Patients with known *KRAS*- or *NRAS*-mutant tumors should not be treated with either cetuximab or panitumumab, either alone or in combination with other anticancer agents, because they have virtually no chance of benefit and the exposure to toxicity and expense cannot be justified (see *Biomarkers for Systemic Therapy, KRAS and NRAS Mutations*, above for more information). Individual trials are discussed below. Administration of either cetuximab or panitumumab has been associated with severe infusion reactions, including anaphylaxis, in 3% and 1% of patients, respectively.⁸⁴⁸ Based on case reports and a small trial, administration of panitumumab seems to be feasible for patients experiencing severe infusion reactions to cetuximab.⁸⁵¹⁻⁸⁵³ Skin toxicity is a side effect of both of these agents and is not considered part of the infusion reactions. The incidence and severity of skin reactions with cetuximab and panitumumab seem to be very similar. Furthermore, the presence and severity of skin rash in patients receiving either of these drugs have been shown to predict increased response and survival.^{661,663,854-857} An NCCN task force addressed the management of dermatologic and other toxicities associated with anti-EGFR inhibitors.⁸⁵⁸ Cetuximab and panitumumab have also been associated with a risk for venous thromboembolic and other serious AEs.^{859,860} Based on the results of the PACCE and CAIRO2 trials, the panel strongly advises against the concurrent use of bevacizumab with either cetuximab or panitumumab (see *Bevacizumab*, above).^{764,765} Several trials that assessed EGFR inhibitors in combination with various chemotherapy agents are discussed below. Cetuximab/Panitumumab and Primary Tumor Sidedness: A growing body of data has shown that the location of the primary tumor can be both prognostic and predictive of response to EGFR inhibitors in mCRC. $^{861-869}$ For example, outcomes of 75 patients with mCRC treated with cetuximab, panitumumab, or cetuximab/irinotecan in first-line or subsequent lines of therapy at three Italian centers were analyzed based on sidedness of the primary tumor. 862 No responses were seen in the patients with right-sided primary tumors compared with a response rate of 41% in those with left-sided primaries (P = .003). The median PFS was 2.3 and 6.6 months in patients with right-sided and left-sided tumors, respectively (HR, 3.97; 95% CI, 2.09–7.53; P < .0001). The strongest evidence for the predictive value of primary tumor sidedness and response to EGFR inhibitors is in the first-line treatment of patients in the phase III CALGB/SWOG 80405 trial. Refer the study showed that patients with RAS wild-type, right-sided primary tumors (cecum to hepatic flexure) had longer OS if treated with bevacizumab than if treated with cetuximab in first line (HR, 1.36; 95% CI, 0.93–1.99; P = .10), whereas patients with all RAS wild-type, left-sided primary tumors (splenic flexure to rectum) had longer OS if treated with cetuximab than if treated with bevacizumab (HR, 0.77; 95% CI, 0.59–0.99; P = .04). Refore the left-sided primary group (39.3 vs. 32.6 months) but shortened in the right-sided primary group (13.6 vs. 29.2 months). Retrospective analyses of other contemporary studies have confirmed this finding. These and other data suggest that cetuximab and panitumumab confer little if any benefit to patients with mCRC if the primary tumor originated on the right side. 861,862,864 The panel believes that primary tumor sidedness is a surrogate for the non-random distribution of molecular subtypes across the colon and that the ongoing analysis of genomic differences between right- and left-sided tumors 871 will enable a better understanding of the biologic explanation of the observed difference in response to EGFR inhibitors. Until that time, only patients whose primary tumors originated on the left side of the colon (splenic flexure to rectum) should be offered cetuximab or panitumumab. Cetuximab with FOLFIRI: Use of cetuximab as initial therapy for metastatic disease was investigated in the CRYSTAL trial, in which patients were randomly assigned to receive FOLFIRI with or without cetuximab. 663 Retrospective analyses of the subset of patients with known KRAS exon 2 tumor status showed a statistically significant improvement in median PFS with the addition of cetuximab in the wild-type (9.9 vs. 8.7 months; HR, 0.68; 95% CI, 0.50–0.94; P = .02). 663 The statistically significant benefit in PFS for patients with KRAS exon 2 wild-type tumors receiving cetuximab was confirmed in a publication of an updated analysis of the CRYSTAL data. 687 This study included a retrospective analysis of OS in the KRAS exon 2 wild-type population and found an improvement with the addition of cetuximab (23.5 vs. 20.0 months; P = .009). Importantly, the addition of cetuximab did not affect the quality of life of participants in the CRYSTAL trial.872 As has been seen with other trials, when DNA samples from the CRYSTAL trial were re-analyzed for additional KRAS and NRAS mutations, patients with RAS wild-type tumors derived a clear OS benefit (HR, 0.69; 95% CI, 0.54–0.88), whereas those with any RAS mutation did not (HR, 1.05; 95% CI, 0.86-1.28).873 Panitumumab with FOLFIRI: FOLFIRI with panitumumab is listed as an option for first-line therapy in mCRC based on extrapolation from data in second-line treatment.^{697,808,874,875} Cetuximab with FOLFOX: Several trials have assessed the combination of FOLFOX and cetuximab in first-line treatment of mCRC. In a retrospective evaluation of the subset of patients with known tumor KRAS exon 2 status enrolled in the randomized phase II OPUS trial, addition of cetuximab to FOLFOX was associated with an increased objective response rate (61% vs. 37%; OR, 2.54; P = .011) and a very slightly lower risk of
disease progression (7.7 vs. 7.2 months [a 15-day difference]; HR, 0.57; 95% CI, 0.36–0.91; P = .016) compared with FOLFOX alone in the subset of patients with KRAS exon 2 wild-type tumors. Although data supporting the statistically significant benefits in objective response rate and PFS for patients with tumors characterized by KRAS wild-type exon 2 were upheld in an update of this study, no median OS benefit was observed for the addition of cetuximab to chemotherapy (22.8 months in the cetuximab arm vs. 18.5 months in the arm undergoing chemotherapy alone; HR, 0.85; P = .39).876 Furthermore, in the randomized phase III MRC COIN trial, no benefit in OS (17.9 vs. 17.0 months; P = .067) or PFS (8.6 months in both groups; P = .60) was seen with the addition of cetuximab to FOLFOX or CAPEOX as first-line treatment of patients with locally advanced or mCRC and wild-type KRAS exon 2.688 Exploratory analyses of the COIN trial, however, suggest that there may be a benefit to the addition of cetuximab in patients who received FOLFOX instead of CAPEOX.688 Notably, additional trials examining the efficacity of the addition of cetuximab to oxaliplatin-containing regimens in the first-line treatment of patients with advanced or mCRC and wild-type *KRAS* exon 2 have not shown any benefit. The addition of cetuximab to the Nordic FLOX regimen showed no benefit in OS or PFS in this population of patients in the randomized phase III NORDIC VII study of the Nordic Colorectal Cancer Biomodulation Group.⁸⁷⁷ However, results from the randomized phase III CALGB/SWOG 80405 trial of greater than 1000 patients (discussed in *Cetuximab or Panitumumab vs. Bevacizumab in First-line Therapy*, below) showed that the combination of FOLFOX with cetuximab can be effective in first-line treatment of mCRC. 768 The phase III open-label, randomized TAILOR trial confirmed this result, reporting benefits in PFS (9.2 vs. 7.4 months; P = .004), OS (20.7 vs. 17.8 months; P = .02), and ORR (61.1% vs. 39.5%; P < .001) with first-line cetuximab plus FOLFOX compared to FOLFOX alone in patients with *RAS* wild-type mCRC. 878 Therefore, the panel recommends cetuximab plus FOLFOX as an initial therapy option for *RAS/BRAF* wild-type patients with advanced or metastatic disease. Panitumumab with FOLFOX: Panitumumab in combination with either FOLFOX^{664,767} or FOLFIRI⁸⁰⁷ has also been studied in the first-line treatment of patients with mCRC. Results from the large, open-label, randomized PRIME trial comparing panitumumab plus FOLFOX versus FOLFOX alone in patients with *KRAS/NRAS* wild-type advanced CRC showed a statistically significant improvement in PFS (HR, 0.72; 95% CI, 0.58–0.90; *P* = .004) and OS (HR, 0.77; 95% CI, 0.64–0.94; *P* = .009) with the addition of panitumumab.⁶⁶⁴ Therefore, the combination of FOLFOX and panitumumab remains an option as initial therapy for patients with advanced or metastatic disease. Importantly, the addition of panitumumab had a detrimental impact on PFS for patients with tumors characterized by mutated *KRAS/NRAS* in the PRIME trial (discussed further in *KRAS* and *NRAS* Mutations within *Biomarkers* for Systemic Therapy, above).⁶⁶⁴ The phase III randomized GONO TRIPLETE study compared mFOLFOXIRI plus panitumumab with mFOLFOX6 plus panitumumab as initial therapy in patients with unresectable RAS/BRAF wild-type mCRC and found that more intensive mFOLFOXIRI plus panitumumab did not provide additional benefit and resulted in non-negligible increases in GI toxicity. The two groups had similar OR rates, at 76% for mFOLFOX6 plus panitumumab versus 73% for mFOLFOXIRI plus panitumumab (odds ratio, 0.87; 95% CI, 0.56–1.34; P = .526). Median PFS was also similar at a median follow up of 26.5 months, at 12.7 months for mFOLFOX6 plus panitumumab versus 12.3 months for mFOLFOXIRI plus panitumumab (HR, 0.88; 95% CI, 0.70–1.11; P = .277). There were also no significant differences in early tumor shrinkage (58% vs. 57%; P = .878) or deepness of response (47% vs. 48%; P = .845) noted. Grade >2 diarrhea occurred in 7% of patients in the mFOLFOX6 plus panitumumab versus 23% of patients in the mFOLFOXIRI plus panitumumab group. Cetuximab with CAPEOX: In a trial comparing CAPEOX/cetuximab versus FOLFOX/cetuximab, 88 patients with extended RAS/BRAF/PIK3CA wild-type mCRC were evaluated.⁸⁸⁰ There was no significant difference in response rate between the CAPEOX/cetuximab versus FOLFOX/cetuximab arms, at 61.5% and 66.7%, respectively (*P* = .298). Disease control rates were also similar, at 86.5% (95% CI, 74.2%–94.4%) for the CAPEOX/cetuximab group versus 88.9% (95% CI, 73.9%–96.9%) for the FOLFOX/cetuximab group. Based on this data, the panel now recommends CAPEOX plus cetuximab or panitumumab in addition to FOLFOX plus cetuximab or panitumumab for initial therapy for advanced or metastatic CRC. Cetuximab or Panitumumab vs. Bevacizumab in First-line Therapy: The randomized, open-label, multicenter FIRE-3 trial from the German AlO group compared the efficacy of FOLFIRI plus cetuximab to FOLFIRI plus bevacizumab in first-line, *KRAS* exon 2 wild-type, metastatic disease. This trial did not meet its primary endpoint of investigator-read objective response rate in the 592 patients (62.0% vs. 58.0%; P = .18). PFS was nearly identical between the arms of the study, but a statistically significant improvement in OS was reported in the cetuximab arm (28.7 vs. 25.0 months; HR, 0.77; 95% CI, 0.62–0.96; P = .017). The panel has several criticisms of the trial, including the lack of third-party review and low rates of second-line therapy. 881,882 While the rate of AEs was similar between the arms, more skin toxicity was observed in those receiving cetuximab. A final survival analysis of the FIRE-3 study reported a median OS in the RAS wild-type population of 31 months with cetuximab versus 26 months with bevacizumab, along with improved outcomes for ORR and median OS in the per-protocol population with cetuximab. 883 PFS was similar between the groups and the advantage for cetuximab only occurred in patients with left-sided primary tumors. The phase III PARADIGM trial is evaluating the use of panitumumab versus bevacizumab when combined with FOLFOX as first-line therapy in 823 patients with *RAS* wild-type mCRC with left-sided tumors. 884 After a median follow-up of 61 months, panitumumab showed a significantly higher median OS when used as part of the first-line regimen compared to bevacizumab. This was true for both the left-sided tumor population (37.9 vs. 34.3 months) as well as the full analysis set (36.3 vs. 31.3 months). While PFS was similar between the treatment groups, RR and R0 resection rates were higher with panitumumab. The Panel notes that since the OS curves do not separate until well after the median PFS, the improvement in OS with panitumumab may be related to what the patients received in later lines of therapy rather than the choice of first-line therapy. Results of the phase III CALGB/SWOG 80405 trial, comparing FOLFOX/FOLFIRI with cetuximab or bevacizumab, were reported. In this study, patients with wild-type *KRAS* exon 2 tumors received either FOLFOX (73%) or FOLFIRI (27%) and were randomized to receive cetuximab or bevacizumab. The primary endpoint of OS was equivalent between the arms, at 29.0 months in the bevacizumab arm versus 30.0 months in the cetuximab arm (HR, 0.88; 95% CI, 0.77–1.01; *P* = .08). Results for the randomized multicenter phase II PEAK trial, which compared FOLFOX/panitumumab with FOLFOX/bevacizumab in first-line treatment of patients with wild-type KRAS exon 2 tumors, were also published. Results In the subset of 170 participants with wild-type KRAS/NRAS based on extended tumor analysis, PFS was better in the panitumumab arm (13.0 vs. 9.5 months; HR, 0.65; 95% CI, 0.44–0.96; P = .03). A trend towards improved OS was seen (41.3 vs. 28.9 months; HR, 0.63; 95% CI, 0.39–1.02; P = .06). The final analysis of the PEAK trial confirmed that FOLFOX/panitumumab showed a longer PFS compared to FOLFOX/bevacizumab in patients with wild-type RAS tumors (12.8 vs. 10.1 months; HR, 0.68; 95% CI, 0.48–0.96; P = .029). Results Although these data are intriguing, definitive conclusions are hindered by the small sample size and limitations of subset analyses. Economic analyses suggest that bevacizumab may be more cost-effective than EGFR inhibitors in first-line therapy for mCRC,⁸⁸⁸ although more recent analyses have shown the opposite.^{889,890} At this time, the panel considers the addition of cetuximab, panitumumab, or bevacizumab to chemotherapy as equivalent choices in the first-line, *RAS/BRAF* wild-type, metastatic setting. Checkpoint Inhibitor Immunotherapy for dMMR/MSI-H Disease in the First-Line Setting The phase III, randomized open-label KEYNOTE-177 study evaluated the use of pembrolizumab compared to chemotherapy with or without bevacizumab or cetuximab as first-line therapy for 307 patients with MSI-H/dMMR mCRC. 891 Median PFS was found to be longer with pembrolizumab compared to chemotherapy (16.5 vs. 8.2 months; HR, 0.60; 95% CI, 0.45–0.80; P = .0002). Confirmed ORR was 43.8% with pembrolizumab versus 33.1% with chemotherapy. Grade \geq 3 treatment-related AEs were reported in 22% of patients treated with pembrolizumab compared to 66% of those treated with chemotherapy. In an updated final analysis of KEYNOTE-177, with a median follow up of 44.5 months, median OS was not reached with pembrolizumab (NR; 95% CI, 49.2 – NR) compared to 36.7 months (NR; 95% CI, 27.6 – NR) with chemotherapy (HR, 0.74; 95% CI, 0.53–1.03; P = .036). 892 A follow up health-related quality of life analysis of 294 patients treated as part of KEYNOTE-177 revealed a clinically meaningful improvement in quality of life with pembrolizumab versus chemotherapy based on European Organisation for Research and Treatment of Cancer Quality of Life Questionnaires (P = .0002). Likewise, the phase II CheckMate-142 trial evaluated the role of
nivolumab in combination with ipilimumab for first-line treatment of dMMR/MSI-H mCRC.⁸⁹⁴ In the first-line cohort, ORR was found to be 69% (95% CI, 53%–82%) and disease control rate of 84% (95% CI, 70.5%–93.5%), with a median follow-up of 29 months. Thirteen percent of patients had complete disease response and the median duration of response, median PFS, and median OS had not been reached. Twenty percent of patients had grade 3 or 4 treatment-related AEs and AEs led to discontinuation in 13% of patients. A 2022 abstract reported 5-year follow up results of CheckMate-142.895 ORR by investigator assessment increased to 71% (95% CI, 56–84), with progressive disease rate of 16%. PFS and OS rates at 48 months were 51% and 72%, respectively. Additional results from CheckMate-142 (including nivolumab alone or in combination with ipilimumab as subsequent therapy) are discussed in Checkpoint Inhibitor Immunotherapy for dMMR/MSI-H Disease in the Non-First-Line Setting, below. Although PD-1 immune checkpoint inhibitors are generally well tolerated, serious adverse reactions—many immune-mediated—occur in as many as 21% to 41% of patients.⁸⁹⁶⁻⁸⁹⁹ The most common immune-mediated side effects are to the skin, liver, kidneys, GI tract, lungs, and endocrine systems.⁹⁰⁰⁻⁹⁰² Pneumonitis, occurring in approximately 3% to 7% of patients on checkpoint inhibitor therapy, is one of the most serious side effects of PD-1 inhibitors. 900,903-905 Based on these data, the panel recommends pembrolizumab; dostarlimab-gxly; or nivolumab, alone or in combination with ipilimumab, as first-line treatment options for patients with MSI-H/dMMR mCRC, regardless of whether intensive therapy is recommended. The recommendation for nivolumab plus ipilimumab is category 2B when intensive therapy is not recommended due to concerns about potential toxicity from the combination therapy. While dostarlimab-gxly does not have clinical trial data for untreated mCRC, the panel feels that the checkpoint inhibitors may be used interchangeably for dMMR/MSI-H mCRC and the clinical trial data for dostarlimab-gxly in both the previously untreated, locally advanced and the previously-treated mCRC settings support its use in the first-line setting. #### Second-line or Subsequent Systemic Therapy Decisions regarding therapy after progression of metastatic disease depend on previous therapies. The panel recommends against the use of mitomycin, alfa-interferon, taxanes, methotrexate, pemetrexed, sunitinib, sorafenib, erlotinib, or gemcitabine, either as single agents or in combination, as therapy in patients exhibiting disease progression after treatment with standard therapies. These agents have not been shown to be effective in this setting. Furthermore, no objective responses were observed when single-agent capecitabine was administered in a phase II study of patients with CRC resistant to 5-FU. The recommended therapy options after first progression for patients who have received prior therapy are dependent on the initial treatment regimen and are outlined in the guidelines. Single-agent irinotecan administered after first progression has been shown to significantly improve OS relative to best supportive care ⁹⁰⁷ or infusional 5-FU/LV. 908 In the study of Rougier et al, 908 median PFS was 4.2 months for irinotecan versus 2.9 months for 5-FU (P = .030), whereas Cunningham et al 907 reported a survival rate at 1 year of 36.2% in the group receiving irinotecan versus 13.8% in the supportive care group (P = .0001). A meta-analysis of five RCTs showed that there was no OS benefit to FOLFIRI over that obtained with irinotecan alone. 909 Furthermore, no significant differences in OS were observed in the Intergroup N9841 trial when FOLFOX was compared with irinotecan monotherapy after first progression of mCRC. 910 A meta-analysis of randomized trials found that the addition of a targeted agent after first-line treatment improves outcomes but also increases toxicity. 911 Another meta-analysis showed an OS and PFS benefit to continuing an anti-angiogenic agent after progression on an anti-angiogenic agent in first-line. 912 Data relating to specific biologic therapies are discussed below. Cetuximab and Panitumumab in the Non–First-line Setting For patients with wild-type KRAS/NRAS/BRAF tumors who experienced progression on therapies not containing an EGFR inhibitor, cetuximab or panitumumab plus irinotecan, cetuximab or panitumumab plus FOLFIRI, or single-agent cetuximab or panitumumab⁶⁵⁹ is recommended. For patients with wild-type KRAS/NRAS/BRAF tumors progressing on therapies that did contain an EGFR inhibitor, administration of an EGFR inhibitor is not recommended in subsequent lines of therapy. No data support switching to either cetuximab or panitumumab after failure of the other drug, and the panel recommends against this practice. Panitumumab has been studied as a single agent in the setting of mCRC for patients with disease progression on oxaliplatin/irinotecan-based chemotherapy in an open-label phase III trial.⁹¹³ In a retrospective analysis of the subset of patients in this trial with known *KRAS* exon 2 tumor status, the benefit of panitumumab versus best supportive care was shown to be enhanced in patients with *KRAS* exon 2 wild-type tumors. PFS was 12.3 weeks versus 7.3 weeks in favor of the panitumumab arm. Response rates to panitumumab were 17% versus 0% in the wild-type and mutant arms, respectively. A more recent phase III trial compared single-agent panitumumab to best supportive care in patients with wild-type *KRAS* exon 2 mCRC and disease progression on oxaliplatin- and irinotecan-based chemotherapy. The primary endpoint of OS was improved with panitumumab (10.0 vs. 7.4 months; HR, 0.73; 95% CI, 0.57–0.93; P < .01). Panitumumab has also been studied in combination therapy in the setting of progressing mCRC. Among patients with KRAS exon 2 wild-type tumors enrolled in the large Study 181 comparing FOLFIRI alone versus FOLFIRI plus panitumumab as second-line therapy for mCRC, addition of the biologic agent was associated with improvement in median PFS (5.9 vs. 3.9 months; HR, 0.73; 95% CI, 0.59-0.90; P = .004), although differences in OS between the arms did not reach statistical significance.808 These results were confirmed in the final results of Study 181.875 Furthermore, reanalysis of samples from the trial showed that the benefit of the combination was limited to participants with no RAS mutations.915 In addition, secondary analysis from the STEPP trial showed that panitumumab in combination with irinotecan-based chemotherapy in second-line therapy has an acceptable toxicity profile.874 The randomized multicenter PICCOLO trial, which assessed the safety and efficacy of irinotecan/panitumumab, did not meet its primary endpoint of improved OS in patients with wild-type KRAS/NRAS tumors.697 Cetuximab has been studied both as a single agent^{659,854,916,917} and in combination with irinotecan⁹¹⁶ in patients experiencing disease progression on initial therapy not containing cetuximab or panitumumab for metastatic disease. Results of a large phase III study comparing irinotecan with or without cetuximab did not show a difference in OS, but showed significant improvement in response rate and in median PFS with irinotecan and cetuximab compared with irinotecan alone. Importantly, *KRAS* status was not determined in this study and toxicity was higher in the cetuximab-containing arm (eg, rash, diarrhea, electrolyte imbalances). In a re-analysis of RAS status, median PFS (5.4 vs. 2.6 months; HR, 0.57; 95% CI, 0.46–0.69; P < .0001) and objective response rate (29.4% vs. 5.0%; odds ratio, 8.12; 95% CI, 4.04–17.40; P < .0001) were improved with cetuximab plus irinotecan compared to irinotecan alone. Median OS was similar between the two groups (12.3 months for cetuximab plus irinotecan vs. 12.0 months for irinotecan alone [HR, 0.91; 95% CI, 0.71–1.17; P = .4645]). Almost 50% of patients in the irinotecan alone arm received cetuximab post-study, potentially masking an OS benefit with the addition of cetuximab. In a retrospective analysis of the subset of patients with known *KRAS* exon 2 tumor status receiving cetuximab monotherapy as second-line therapy, 854 the benefit of cetuximab versus best supportive care was shown to be enhanced in patients with *KRAS* exon 2 wild-type tumors. 659 For those patients, median PFS was 3.7 versus 1.9 months (HR, 0.40; 95% CI, 0.30–0.54; P < .001) and median OS was 9.5 versus 4.8 months (HR, 0.55; 95% CI, 0.41–0.74; P < .001), in favor of the cetuximab arm. 659 The randomized, multicenter, open-label, noninferiority phase III ASPECCT trial compared single-agent cetuximab with single-agent panitumumab in the chemotherapy-refractory metastatic setting. The primary noninferiority OS endpoint was reached, with a median OS of 10.4 months (95% CI, 9.4–11.6) with panitumumab and 10.0 months (95% CI, 9.3–11.0) with cetuximab (HR, 0.97; 95% CI, 0.84–1.11). The incidence of AEs was similar between the groups. The final analysis of ASPECCT came to the same conclusion, reporting a median OS of 10.2 months with panitumumab and 9.9 months with cetuximab (HR, 0.98; 95% CI, 0.82–1.07). The randomized, multicenter, phase II SPIRITT trial randomized 182 patients with *KRAS* wild-type tumors whose disease progressed on first-line oxaliplatin-based therapy plus bevacizumab to FOLFIRI plus bevacizumab or FOLFIRI plus panitumumab. 922 No difference was seen in the primary endpoint of PFS between the arms (7.7 months in the panitumumab arm vs. 9.2 months in the bevacizumab arm; HR, 1.01; 95% CI, 0.68–1.50; P = .97). A pooled analysis of the TRIBE and TRIBE2 studies assessed treatments administered after 2^{nd} disease progression in 1187 mCRC patients who received upfront FOLFOXIRI/ bevacizumab vs FOLFOX or FOLFIRI/ bevacizumab. 923 In 3^{rd} line therapy, patients with RAS/BRAF wild type tumors achieved longer PFS with EGFR inhibitors compared
to other therapies (6.4 vs. 3.9 months, P = .02) #### Bevacizumab in the Non-First-line Setting In the TML (ML18147) trial, patients with mCRC who progressed on regimens containing bevacizumab received second-line therapy consisting of a different chemotherapy regimen with or without bevacizumab. This study met its primary endpoint, with patients continuing on bevacizumab having a modest improvement in OS (11.2 vs. 9.8 months; HR, 0.81; 95% CI, 0.69–0.94; P = .0062). Subgroup analyses from this trial found that these treatment effects were independent of *KRAS* exon 2 status. Similar results were reported from the GONO group's phase III randomized BEBYP trial, in which the PFS of patients who continued on bevacizumab plus a different chemotherapy regimen following progression on bevacizumab was 6.8 months compared to 5.0 months in the control arm (HR, 0.70; 95% CI, 0.52–0.95; P = .001). 926 An improvement in OS was also seen in the bevacizumab arm (HR, 0.77; 95% CI, 0.56–1.06; P = .04). The EAGLE trial randomized 387 patients with disease progression following oxaliplatin-based therapy with bevacizumab to second-line therapy with FOLFIRI plus either 5 or 10 mg/kg bevacizumab. 927 No difference was seen in PFS or time to treatment failure between the arms, indicating that 5 mg/kg of bevacizumab is an appropriate dose in second-line treatment of mCRC. The continuation of bevacizumab following progression on bevacizumab was also studied in a community oncology setting through a retrospective analysis of 573 patients from the US Oncology iKnowMed electronic medical record system. Bevacizumab beyond progression was associated with a longer OS (HR, 0.76; 95% CI, 0.61–0.95) and a longer post-progression OS (HR, 0.74; 95% CI, 0.60–0.93) on multivariate analysis. Analyses of the ARIES observational cohort found similar results, with longer post-progression survival with continuation of bevacizumab (HR, 0.84; 95% CI, 0.73–0.97). 929 Overall, these data (along with data from the VELOUR trial, discussed below) show that the continuation of VEGF blockade in second-line therapy offers a very modest but statistically significant OS benefit. The panel added the continuation of bevacizumab to the second-line treatment options in the 2013 versions of the NCCN Guidelines for Colon and Rectal Cancers. It may be added to any regimen that does not contain another targeted agent. The panel recognizes the lack of data suggesting a benefit to bevacizumab with irinotecan alone in this setting, but believes that the option is acceptable, especially in patients whose disease progressed on a 5-FU– or capecitabine-based regimen. When an angiogenic agent is used in second-line therapy, bevacizumab is preferred over ziv-aflibercept and ramucirumab (discussed below), based on toxicity and/or cost. 930 Beyond the second-line setting, bevacizumab may be combined with trifluridine-tipiracil [see *Trifluridine-Tipiracil (TAS-102*), below, for more information]. It may also be appropriate to consider using bevacizumab with second-line therapy after progression on a first-line regimen that did not contain bevacizumab.⁹³¹ However, there are no data to support adding bevacizumab to a regimen after progression on that same regimen. The randomized phase III ECOG E3200 study in patients who experienced disease progression through a first-line non-bevacizumab—containing regimen showed that the addition of bevacizumab to second-line FOLFOX modestly improved survival. Median OS was 12.9 months for patients receiving FOLFOX plus bevacizumab compared with 10.8 months for patients treated with FOLFOX alone (P = .0011). Use of single-agent bevacizumab is not recommended because it was shown to have inferior efficacy compared with the FOLFOX alone or FOLFOX plus bevacizumab treatment arms. Use of Single-agent bevacizumab arms. #### Ziv-Aflibercept Ziv-aflibercept is a recombinant protein that has part of the human VEGF receptors 1 and 2 fused to the Fc portion of human IgG1.⁹³² It is designed to function as a VEGF trap to prevent activation of VEGF receptors and thus inhibit angiogenesis. The VELOUR trial tested second-line ziv-aflibercept in patients with mCRC that progressed after one regimen containing oxaliplatin. The trial met its primary endpoint with a small improvement in OS (13.5 months for FOLFIRI/ziv-aflibercept vs. 12.1 months for FOLFIRI/placebo; HR, 0.82; 95% CI, 0.71–0.94; *P* = .003).⁹³³ A prespecified subgroup analysis from the VELOUR trial found that median OS in the ziv-aflibercept arm versus the placebo arm was 12.5 months (95% CI, 10.8–15.5) versus 11.7 months (95% CI, 9.8–13.8) in patients with prior bevacizumab treatment and 13.9 months (95% CI, 12.7–15.6) versus 12.4 months (95% CI, 11.2–13.5) in patients with no prior bevacizumab treatment.⁹³⁴ AEs associated with ziv-aflibercept treatment in the VELOUR trial led to discontinuation in 26.6% of patients compared to a 12.1% discontinuation in the placebo group. 933 The most common causes for discontinuation were asthenia/fatigue, infections, diarrhea, hypertension, and venous thromboembolic events. Ziv-aflibercept has only shown activity when given in conjunction with FOLFIRI in patients without prior exposure to FOLFIRI. No data suggest activity of FOLFIRI plus ziv-aflibercept in patients whose disease progressed on FOLFIRI plus bevacizumab or vice-versa, and no data suggest activity of single-agent ziv-aflibercept. Furthermore, the addition of ziv-aflibercept to FOLFIRI in first-line therapy of patients with mCRC in the phase II AFFIRM study had no benefit and increased toxicity. 935 Thus, the panel added ziv-aflibercept as a second-line treatment option in combination with FOLFIRI or irinotecan only following progression on therapy not containing irinotecan. However, the panel prefers bevacizumab over ziv-aflibercept and ramucirumab (discussed below) in this setting, based on toxicity and/or cost.930 #### Ramucirumab Another anti-angiogenic agent, ramucirumab, is a human monoclonal antibody that targets the extracellular domain of VEGF receptor 2 to block VEGF signaling. 936 In the multicenter, phase III RAISE trial, 1072 patients with mCRC whose disease progressed on first-line therapy with fluoropyrimidine/oxaliplatin/bevacizumab were randomized to FOLFIRI with either ramucirumab or placebo. 937 The primary endpoint of OS in the ITT population was met at 13.3 months and 11.7 months in the ramucirumab and placebo groups, respectively, for an HR of 0.84 (95% CI, 0.73–0.98; P = .02). PFS was also improved with the addition of ramucirumab, at 5.7 months and 4.5 months for the two arms (HR, 0.79; 95% CI, 0.70–0.90; P < .0005). A subgroup analysis of the RAISE trial subsequently reported similar efficacy and safety among patient subgroups with different *KRAS* mutation tumor status, time to progression on first-line therapy, and age. 938 Rates of discontinuation due to AEs in the RAISE trial were 11.5% in the ramucirumab arm and 4.5% in the placebo arm. The most common grade 3 or worse AEs were neutropenia, hypertension, diarrhea, and fatigue. In addition, a meta-analysis of six phase III trials showed that ramucirumab did not increase the risk of arterial thromboembolic events, venous thromboembolic events, high-grade bleeding, or high-grade GI bleeding compared to placebo controls. 939 These results suggest that ramucirumab may be distinct among antiangiogenic agents in that it does not increase the risk of these events. Considering the results of the RAISE trial, the panel added ramucirumab as a second-line treatment option in combination with FOLFIRI or irinotecan following progression on therapy not containing irinotecan. As with ziv-aflibercept, no data suggest activity of FOLFIRI plus ramucirumab in patients whose disease progressed on FOLFIRI plus bevacizumab or vice-versa, and no data suggest activity of single-agent ramucirumab. When an angiogenic agent is used in this setting, the panel prefers bevacizumab over ziv-aflibercept and ramucirumab, because of toxicity and/or cost. 930 Encorafenib Plus Cetuximab or Panitumumab for BRAF V600E Mutation-Positive Disease in the Non–First-line Setting A combination of the BRAF inhibitor, encorafenib, and the MEK inhibitor, binimetinib, with cetuximab has been investigated in the randomized, phase III BEACON trial for metastatic, *BRAF* V600E mutation-positive CRC.^{940,941} The safety lead-in of the BEACON trial showed promising efficacy results with an ORR of 48% (95% CI, 29.4%–67.5%) among the 29 patients included in the efficacy analysis. Among the 30 treated patients in the safety lead-in, the most common grade 3 or 4 AEs were fatigue (13%), anemia (10%), increased creatine phosphokinase (10%), increased aspartate transaminase (AST) (10%), and urinary tract infections (10%).⁹⁴⁰ Subsequently, the randomized portion of the BEACON trial reported similarly encouraging results, including a positive OS result.⁹⁴¹ Within this portion of the study, 665 patients were randomized to receive either the triplet combination, an encorafenib and cetuximab doublet, or a control regimen of cetuximab plus either irinotecan or FOLFIRI. Updated results of BEACON reported a median OS of 5.9 months, 9.3 months, and 9.3 months for the control, doublet, and triplet arms, respectively. The confirmed ORRs were 1.8%, 19.5%, and 26.8%, respectively, and grade 3 or higher AE rates were highest in the triplet arm, although the addition of binimetinib did not improve OS over the doublet. Quality-of-life assessments showed that the doublet and triplet regimens led to a similarly longer maintenance of quality of life compared with control. Based on these reports, the NCCN Panel concluded that only the doublet regimen of encorafenib with either cetuximab or panitumumab should be recommended for patients with BRAF V600E-mutated mCRC. Data exist on the use of cetuximab or panitumumab in combination with irinotecan and vemurafenib⁹⁴⁴ or dabrafenib plus trametinib⁹⁴⁵ for
BRAF V600E mutation-positive mCRC. However, based on superior data and/or lower toxicity with the encorafenib-containing doublets, the panel voted to not include recommendations for these regimens within the current version of the guidelines. Systemic Therapy Options for HER2-Amplified Disease Four different regimens are recommended by the panel as options for subsequent treatment of mCRC with HER2 amplifications: famtrastuzumab deruxtecan-nxki (T-DXd) monotherapy or trastuzumab in combination with pertuzumab, lapatinib, or tucatinib. These regimens (with the exception of T-DXd) may also be appropriate for patients with previously untreated HER2-amplified mCRC when intensive therapy is not recommended. The NCCN Panel notes that FDA-approved biosimilars may be substituted for trastuzumab wherever the therapy is recommended within these Guidelines (see *Biosimilars*, above, for more information). The results of clinical trials supporting each of these regimens are detailed below. Trastuzumab Plus Pertuzumab: A combination regimen of the HER2 inhibitors trastuzumab and pertuzumab was studied in a subset analysis of MyPathway, a phase IIa multiple basket study. 946 This subset included 57 patients with previously treated, HER2-amplified mCRC who were treated with the combination of pertuzumab and trastuzumab. ORR was 32% (95% CI, 20–45), with 1 complete response and 17 partial responses. Thirty-seven percent of patients treated with trastuzumab plus pertuzumab had grade 3 or 4 AEs, with hypokalemia and abdominal pain being most common. Another phase II basket study, TAPUR, also investigated the combination of trastuzumab and pertuzumab in HER2-amplified mCRC.947 In this study, 28 patients with heavily pretreated, HER2-amplified advanced CRC were treated with the combination. The disease control rate was 54% and objective response was observed in 25% of patients. The median PFS and median OS were 9.6 weeks and 28.8 weeks, respectively. Four patients had at least one grade 3 AE or serious AE, including anemia, infusion reaction, left ventricular dysfunction, and decreased lymphocyte count. *Trastuzumab Plus Lapatinib:* The combination of trastuzumab plus the dual HER2/EGFR inhibitor, lapatinib, was studied in the multicenter, phase II HERACLES trial. To This trial included 27 patients with previously treated, HER2-positive tumors that were treated with trastuzumab and lapatinib. ORR was 30% (95% CI, 14–50), with one complete response, seven partial responses, and 12 patients with stable disease. Twenty-two percent of patients treated with trastuzumab plus lapatinib had grade 3 AEs, including fatigue (four patients), skin rash (one patient), and increased bilirubin (one patient). *Trastuzumab Plus Tucatinib:* A combination regimen of the HER2 inhibitors trastuzumab and tucatinib is being studied in the ongoing multicenter, phase II MOUNTAINEER trial (NCT 03043313).⁹⁴⁸ This trial included 117 patients with HER2-positive mCRC with progression on or intolerance to a fluoropyrimidine, oxaliplatin, irinotecan, and an anti-VEGF agent. With a median follow up of 16.3 months, results from the primary analysis revealed an ORR of 38.1% (95% CI, 27.7–49.3). Median duration of response was 12.4 months (95% CI, 8.5–20.5 months), median PFS was 8.2 months (95% CI, 4.2–10.3 months), and median OS was 24.1 months (95% CI, 20.3–36.7 months). The most common AEs were diarrhea (64%), fatigue (44.2%), nausea (34,9%), and infusion-related reactions (20.9%). Grade 3 or higher hypertension occurred in 7% of patients. T-DXd: The HER2-directed antibody and topoisomerase inhibitor conjugate was studied in the phase 2, multicenter DESTINY-CRC01 trial of 78 patients with HER2-expressing, RAS/BRAF wild-type unresectable and/or mCRC that had already progressed on at least two prior regimens.949 Patients were split into three cohorts based on the level of tumor HER2 expression (cohort A: IHC 3+ or IHC 2+/ISH+; cohort B: IHC 2+/ISH -; cohort C: IHC 1+). In cohort A, the primary endpoint of ORR was 45.3%, with one complete response and 23 partial responses. Median PFS in this group was 6.9 months, and median OS had not yet been reached at the time of data cutoff. No responses were reported in cohorts B or C. Thirty percent of patients in cohort A had received prior anti-HER2 therapy; for these patients ORR was 43.8%. The most common grade ≥3 treatment-emergent AEs were decreased neutrophil count (22%) and anemia (14%). Of note, five patients on this trial developed interstitial lung disease or pneumonitis related to T-Dxd, including two deaths due to this complication (2.6% of all patients). Systemic Therapy Options for KRAS G12C Mutation-Positive Disease in the Non-First-Line Setting Two KRAS G12C inhibitors, sotorasib and adagrasib, are recommended for treatment of previously treated metastatic colorectal cancer which harbors this mutation. Sotorasib or adagrasib should be given in combination with cetuximab or panitumumab or may be considered as a single-agent if there are concerns about toxicities from EGFR inhibitors. Mechanisms for acquired resistance to adagrasib and sotorasib have been described.⁹⁵⁰ The phase I portion of the CodeBreaK 100 trial was a basket study of sotorasib monotherapy. It included 129 patients with solid tumors harboring the KRAS G12C mutation, 42 with colorectal cancer.951 Of the subgroup with CRC, 7.1% had a confirmed response and 73.8% had disease control. A prespecified subset analysis of the phase II portion of CodeBreaK 100 investigated sotorasib monotherapy for previously treated mCRC with KRAS G12C mutation. 952 Objective response was observed in 9.7% of the 62 treated patients. Grade ≥3 treatment-related AEs occurred in 11.6% of patients treated with sotorasib monotherapy. The phase lb/2 CodeBreaK 101 trial looked at various doublets including sotorasib. One cohort of this trial investigated the combination of sotorasib plus panitumumab in 40 patients with previously treated KRAS G12C-mutated mCRC. An abstract with results from the fully enrolled dose expansion cohort reported a confirmed ORR was 30% (95% CI, 16.6%-46.5%) with a disease control rate of 90% (95% CI, 76.3%-97.2%).953 Grade 3 treatment-related AEs occurred in 22.5% of patients who received the combination therapy, with none requiring treatment discontinuation. KRYSTAL-1 is a phase 1/2 clinical trial evaluating the safety and efficacy of adagrasib, alone or in combination with other anticancer therapies, in patients with advanced solid tumors that had been previously treated. One publication of this study reported results for patients with *KRAS* G12C-mutated mCRC treated with adagrasib alone (n = 44) or adagrasib in combination with cetuximab (n = 32). 954 In this subgroup, disease response was reported in 19% of patients treated with adagrasib monotherapy, with a median duration of response of 4.3 months (95% CI, 8–33) and median PFS of 5.6 months (95% CI, 2.3–8.3). For the combination of adagrasib and cetuximab, responses were noted in 46% of patients, with a median response duration of 7.6 months (95% CI, 5.7 to not estimable) and median PFS of 6.9 months (95% CI, 5.4–8.1). Grade ≥3 treatment-related AEs were reported in 34% of patients who received the monotherapy and 16% of those who received the combination. Checkpoint Inhibitor Immunotherapy for dMMR/MSI-H Disease in the Non–First-line Setting The Panel currently recommends that dMMR/MSI-H mCRC be treated with a checkpoint inhibitor as first-line therapy if no prior immunotherapy has been received and the patient is a candidate for immunotherapy. However, if a different therapy was used in the first-line setting, checkpoint inhibitor immunotherapy is also appropriate for use in the non–first-line setting. Pembrolizumab is a humanized, IgG4 monoclonal antibody that binds to PD-1 with high affinity, preventing its interaction with PD-L1 and PD-L2 and thus allowing immune recognition and response. 728 A phase II study evaluated the activity of pembrolizumab in 11 patients with dMMR CRC, 21 patients with pMMR CRC, and nine patients with dMMR noncolorectal carcinomas.896 All patients had progressive metastatic disease; the patients in the colorectal arms had progressed through two to four previous therapies. The primary endpoints were the immunerelated objective response rate and the 20-week immune-related PFS rate. The immune-related objective response rates were 40% (95% CI, 12–74) in the dMMR CRC group, 0% (95% CI, 0–20) in the pMMR CRC group, and 71% (95% CI, 29-96) in the dMMR non-colorectal group. The 20-week immune-related PFS rates were 78% (95% CI, 40-97), 11% (95% CI, 1-35), and 67% (95% CI, 22-96), respectively. These results indicate that MSI is a predictive marker for the effectiveness of pembrolizumab across tumor types. Furthermore, the median PFS and OS were not reached in the arm with dMMR CRC and were 2.2 and 5.0 months, respectively, in the pMMR CRC group (HR for disease progression or death, 0.10; *P* < .001). Another phase II study, KEYNOTE-164, investigated the efficacy of pembrolizumab in 124 patients with MSI-H/dMMR mCRC that had been treated with at least one previous line of therapy.⁹⁵⁵ The patients on this study were divided into two cohorts based on whether they had received 2 lines or more of therapy including fluoropyrimidine, oxaliplatin, and irinotecan (cohort A) or 1 or more lines of therapy (cohort B). ORR was reported as 33% for both cohorts, with the median duration of response not reached at the time of publication. Median PFS was 2.3 months and 4.1 months, for cohorts A and B, respectively. Median OS was 31.4 months for cohort A and had not been reached for cohort B. Treatment-related AEs of grade ≥3 occurred in 16% of patients in cohort A and 13% in cohort B, with pancreatitis, fatigue, increased alanine aminotransferase, and increased lipase being most common. Nivolumab is another humanized IgG4 PD-1 blocking antibody, 956 which was studied with or
without ipilimumab in patients with mCRC in the phase II, multi-cohort CheckMate-142 trial. 898,899 One cohort of this trial included 74 patients with dMMR CRC who were treated with nivolumab. ORR for these patients was 31.1% (95% CI, 20.8–42.9) with 69% of patients having disease control for at least 12 weeks. Median duration of response had not yet been reached at the time of data collection. PFS and OS were 50% and 73%, respectively, at 1 year. Grade 3 or 4 drug-related AEs occurred in 20% of patients, with increased amylase and increased lipase being most common. 898 Emerging 5-year long term data revealed an ORR of 39% (95% CI, 28–51). 895 PFS and OS at 48 months were 36% and 49%, respectively. Another cohort of the CheckMate-142 included 119 patients with dMMR CRC who were treated with nivolumab in combination with ipilimumab. For this cohort, ORR was 55% (95% CI, 45.2–63.8) and the disease control rate for at least 12 weeks was 80%. PFS and OS were 71% and 85%, respectively, at 1 year. In addition, significant, clinically meaningful improvements were observed in patient-reported outcomes of functioning, symptoms, and quality of life. Grade 3 to 4 treatment-related AEs occurred in 32% of patients, but were manageable. ⁸⁹⁹ An in-depth analysis of the safety profile of nivolumab plus ipilimumab on the CheckMate-142 trial reported that AEs predefined in the study protocol as being of special clinical interest (eg, endocrine, GI, hepatic, pulmonary, renal, and skin events) tended to occur early in treatment, were managed using evidence-based treatment algorithms, and resolved. ⁹⁵⁷ Emerging 5-year long term data from this cohort revealed an ORR of 65% (95% CI, 55–73). ⁸⁹⁵ PFS and OS at 48 months were 54% and 71%, respectively. A third humanized IgG4 PD-1 blocking antibody, dostarlimab-gxly, has been FDA-approved for the treatment of adult patients with dMMR recurrent or advanced solid tumors that have progressed on or following treatment and who have no satisfactory alternative treatment options. 958 The safety and efficacy of dostarlimab-gxly was evaluated in the ongoing phase I GARNET study of patients with advanced solid tumors who had previously received systemic therapy for advanced disease. 959 Cohort F of this trial enrolled patients with dMMR or POLEmut non-endometrial solid tumors, the majority of which were gastrointestinal cancers. Of the 106 patients in the efficacy analysis, confirmed ORR in dMMR cases was 38.7% (95% CI, 29.4–48.6), with 7.5% achieving complete response. For CRC specifically, the ORR was 36.2% (95% CI, 25.0-48.7). Treatmentrelated AEs were reported in 68.8% of 144 patients included in the safety analysis and 8.3% experienced at least one grade ≥3 AE. Increased lipase was most common and dostarlimab-gxly was discontinued in two patients due to a treatment-related AE. Based on these data, the panel recommends pembrolizumab, nivolumab, nivolumab plus ipilimumab, or dostarlimab-gxly as subsequent-line treatment options in patients with metastatic dMMR/MSI-H CRC who have not previously received checkpoint inhibitor immunotherapy. Larotrectinib or Entrectinib for NTRK Gene Fusion-Positive Disease in the Non–First-line Setting Studies have estimated that about 0.2% to 1% of CRCs carry *NTRK* gene fusions.^{720,721} Two targeted therapies, larotrectinib and entrectinib, have been FDA-approved for the treatment of patients with metastatic, unresectable solid tumors that have an *NTRK* gene fusion and no satisfactory alternative treatment options, regardless of the location of the primary tumor.^{960,961} A pooled analysis of three studies (a phase I including adults, a phase I/II involving children, and the phase II NAVIGATE study involving adolescents and adults) studied the safety and efficacy of larotrectinib in 55 patients with NTRK gene fusion-positive tumors, including four patients with colon cancer.⁷¹⁹ For the whole population, the ORR was 75% (95% CI, 61–85) by independent review and 80% (95% CI, 67–90) by investigator assessment,719 although the package insert cites a 25% ORR for colon tumors specifically. 961 Larotrectinib was found to be well-tolerated as the majority (93%) of AEs were grades 1 or 2 and no treatment-related AEs of grades 3 or 4 occurred in more than 5% of patients.⁷¹⁹ A subsequent analysis of these three studies included 159 patients, eight with colon cancer, and reported similar results compared to the earlier analysis. 962 In this later analysis, the ORR was 79% (95% CI, 72–85) by investigator assessment with 16% complete responses. An analysis of 14 patients with GI cancer who were treated with larotrectinib in the NAVIGATE study reported a median PFS of 5.3 months (95% CI, 2.2–9.0) and a median OS of 33.4 months (95% CI, 2.8-36.5).963 Responses were ongoing for five patients, leading their results to be censored. Of the 8 patients with colon cancer, 50% showed a partial response and 50% had stable disease. An integrated analysis of three global phase I/II studies (ALKA-372-001, STARTRK-1, and STARTRK-2) tested the efficacy and safety of entrectinib in 54 adult patients with advanced or metastatic *NTRK* gene fusion-positive solid tumors. For the whole population, ORR was 57% (95% CI, 43.2–70.8), median PFS was 11 months (95% CI, 8.0–14.9), and median OS was 21 months (95% CI, 14.9–not estimable) by independent review. Median duration of response was 10 months (95% CI, 7.1–not estimable). Of the four patients with CRC in this study, one was recorded as having a response. Notably, a similar ORR (50% vs. 60%) was observed among those with central nervous system metastasis, indicating that entrectinib has activity in this population. Entrectinib was found to be well-tolerated as most treatment-related AEs were grade 1 or 2 and managed with dose reduction, leading few (4%) patients to discontinue therapy due to treatment-related AEs. Based on these results the panel added larotrectinib and entrectinib as subsequent treatment options for patients with *NTRK* gene fusion-positive disease, acknowledging that these therapies will not be appropriate for most patients due to the rarity of the *NTRK* fusion in CRC. Selpercatinib for RET Gene Fusion-Positive Disease in the Non-First-Line Setting In the ongoing phase 1/2 LIBRETTO-001 trial, the efficacy and safety of the highly selective RET kinase inhibitor selpercatinib is being investigated in a diverse group of patients with *RET* gene fusion-positive tumors, including 10 patients with colon cancer. Patients in this trial had received a median of 2 prior lines of systemic therapy and 31% of patients received 3 or more prior lines of treatment. Of a total of 41 efficacy-evaluable patients, the ORR for the entire cohort by independent review was 43.9% (95% CI, 28.5–60.3) and 20% in the colon cancer subgroup (95% CI, 2.5–55.6). There were 2 complete responses (5%), although neither patient had colon cancer. For the entire cohort, median PFS was 13.2 months (95% CI, 7.4–26.2) by independent review, median OS was 18 months (95% CI, 10.7–not evaluable), and median duration of response was 24.5 months (95% CI, 9.2–not evaluable). For the colon cancer subgroup, median duration of response was 9.4 months (95% CI, 5.6–13.3). The most common grade 3 or higher treatment emergent AEs were hypertension and transaminitis. The most common treatment-related serious AEs were drug-induced livery injury, fatigue, and hypersensitivity. One patient had to permanently discontinue selpercatinib due to drug-induced liver injury. Based on these data, the FDA has approved selpercatinib for locally advanced or metastatic solid tumors with a *RET* gene fusion that have progressed on or following prior systemic treatment or who have no satisfactory alternative treatment options.⁹⁶⁵ #### Regorafenib Regorafenib is a small-molecule inhibitor of multiple kinases (including VEGF receptors, fibroblast growth factor [FGF] receptors, platelet-derived growth factor [PDGF] receptors, BRAF, KIT, and RET) that are involved with various processes including tumor growth and angiogenesis. 966 The phase III CORRECT trial randomized 760 patients whose disease progressed on standard therapy to best supportive care with placebo or regorafenib. 967 The trial met its primary endpoint of OS (6.4 months for regorafenib vs. 5.0 months for placebo; HR, 0.77; 95% CI, 0.64–0.94; P = .005). PFS was also significantly but modestly improved (1.9 vs. 1.7 months; HR, 0.49; 95% CI, 0.42–0.58; P < .000001). The randomized, double-blind, phase III CONCUR trial was performed in China, Hong Kong, South Korea, Taiwan, and Vietnam. Patients with progressive mCRC were randomized 2:1 to receive regorafenib or placebo after two or more previous treatment regimens. After a median follow-up of 7.4 months, the primary endpoint of OS was met in the 204 randomized patients (8.8 months in the regorafenib arm vs. 6.3 months in the placebo arm; HR, 0.55; 95% CI, 0.40–0.77; P < .001). The most common grade 3 or higher AEs in the regorafenib arm of the CORRECT trial were hand-foot skin reaction (17%), fatigue (10%), hypertension (7%), diarrhea (7%), and rash/desquamation (6%). 967 Severe and fatal liver toxicity occurred in 0.3% of 1100 patients treated with regorafenib across all trials. 966 In a meta-analysis of four studies that included 1078 patients treated with regorafenib for CRC, GI stromal tumor (GIST), renal cell carcinoma, or hepatocellular carcinoma, the overall incidence of all-grade and high-grade hand-foot skin reactions was 60.5% and 20.4%, respectively. 969 In the subset of 500 patients with CRC, the incidence of all-grade hand-foot skin reaction was 46.6%. Other studies have also investigated regorafenib for treatment of refractory mCRC. The phase IIIb CONSIGN trial assessed the safety of regorafenib in 2872 patients from 25 countries with refractory mCRC.⁹⁷⁰ The REBECCA study assessed the safety and efficacy of regorafenib in a cohort of 654 patients with mCRC within a
compassionate use program.⁹⁷¹ The prospective, observational CORRELATE study assessed the safety and efficacy of regorafenib in 1037 patients with mCRC in real-world clinical practice.⁹⁷² The safety and efficacy profiles of regorafenib in all of these trials were consistent with that seen in the CORRECT trial. The randomized, phase II ReDOS trial investigated the use of an alternative dose schedule to reduce the toxicities related to regorafenib treatment. The 116 evaluable patients, the dose-escalation group had a higher percentage of patients who initiated cycle 3 of regorafenib (43%) compared to the standard dosing group (26%). Rates of several of the most common AEs were also lower among the dose-escalation group compared to the standard dosing group. Based on these results, the panel agreed that a dose-escalation strategy is an appropriate alternative approach for regorafenib dosing. Regorafenib has only shown activity in patients whose disease has progressed on all standard therapy. Therefore, the panel added regorafenib as an additional line of therapy for patients with mCRC refractory to chemotherapy. It can be given before or after trifluridine-tipiracil; no data inform the best order of these therapies. #### Trifluridine-Tipiracil (TAS-102) Trifluridine-tipiracil is an oral combination drug, consisting of a cytotoxic thymidine analog, trifluridine, and a thymidine phosphorylase inhibitor, tipiracil hydrochloride, which prevents the degradation of trifluridine. Early clinical studies of the drug in patients with CRC were promising.^{974,975} Results of the double-blind, randomized, controlled, international phase III RECOURSE trial were published in 2015, 976 followed shortly thereafter by approval of trifluridine-tipiracil by the FDA. 977 With 800 patients with mCRC who progressed through at least two prior regimens randomized 2:1 to receive trifluridine-tipiracil or placebo, the primary endpoint of OS was met (5.3 vs. 7.1 months; HR, 0.68; 95% CI, 0.58–0.81; P < .001). 976 Improvement was also seen in the secondary endpoint of PFS (1.7 vs. 2.0 months; HR, 0.48; 95% CI, 0.41–0.57; P < .001). The most common AEs associated with trifluridine-tipiracil in RECOURSE were neutropenia (38%), leukopenia (21%), and febrile neutropenia (4%); one drug-related death occurred. 976 A postmarketing surveillance study did not reveal any unexpected safety signals 978 and a subgroup analysis of the RECOURSE trial reported similar efficacy and safety regardless of age, geographical origin, or *KRAS* mutation status. 979 The combination of trifluridine-tipiracil and bevacizumab has also been studied in the non-first-line setting. C-TASK FORCE was an open-label, single-arm phase I/II study of trifluridine-tipiracil plus bevacizumab for patients with mCRC who had previously received a fluoropyrimidine, irinotecan, oxaliplatin, an anti-VEGF therapy, and an anti-EGFR therapy, if eligible.⁹⁸⁰ Patients in this study had not been previously treated with regorafenib. The primary endpoint of PFS at 16 weeks was 42.9% and treatment-related serious AEs were reported in 12% of patients. Based on the results from C-TASK FORCE, a randomized phase II trial of 93 patients was initiated to compare trifluridine-tipiracil with and without bevacizumab in this patient population.⁹⁸¹ On the phase II trial, previous treatment with a VEGF inhibitor and/or regorafenib were permitted, but not required for study eligibility. After a median follow-up of 10 months, the median PFS was 2.6 months for trifluridine-tipiracil alone compared to 4.6 months in combination with bevacizumab (HR, 0.45; 95% CI, 0.29–0.72; *P* = .0015). Toxicity was similar between the two groups, with serious AEs reported in 45% of patients who received trifluridine-tipiracil alone and 41% of those who received trifluridine-tipiracil in combination with bevacizumab. A retrospective study of 57 patients with refractory mCRC showed similar results, with an improved median OS for trifluridine-tipiracil with bevacizumab versus without (14.4 vs. 4.5 months; *P* < .001). 982 Based on these data, the panel added trifluridine-tipiracil, with or without bevacizumab, as a treatment option for patients whose disease has progressed through standard therapies. The bevacizumab combination is preferred over trifluridine-tipiracil alone. It can be given before or after regorafenib; no data inform the best order of these therapies, although real-world data have shown that patients show better adherence to trifluridine-tipiracil compared to regorafenib. The 144 patients in RECOURSE who had prior exposure to regorafenib obtained similar OS benefit from trifluridine-tipiracil (HR, 0.69; 95% CI, 0.45–1.05) as the 656 patients who did not (HR, 0.69; 95% CI, 0.57–0.83). The combination of trifluridine-tipiracil and bevacizumab has also been studied in the first-line setting in both the phase III SOLSTICE study⁹⁸⁴ and the phase II TASCO1 study.^{985,986} Both of these studies compared trifluridine-tipiracil plus bevacizumab to capecitabine plus bevacizumab in patients who were not candidates for intensive therapy and have shown similar OS and PFS results between the two treatment groups. Based on concerns about the hematologic and financial toxicities with trifluridine-tipiracil compared to capecitabine, the NCCN Panel does not currently recommend trifluridine-tipiracil, with or without bevacizumab, as first-line therapy for mCRC. #### Workup and Management of Synchronous Metastatic Disease The workup for patients in whom metastatic synchronous adenocarcinoma from the large bowel (eg, colorectal liver metastases) is suspected should include a total colonoscopy, CBC, chemistry profile, CEA determination, biopsy if indicated, and CT scan with intravenous contrast of the chest, abdomen, and pelvis.²⁴² MRI with intravenous contrast should be considered if CT is inadequate. The panel also recommends testing for tumor *KRAS/NRAS* and *BRAF* gene status and HER2 amplifications at diagnosis of metastatic disease (see *Biomarkers for Systemic Therapy*, above). However, if the tumor is known to have a *RAS* or *BRAF* mutation, HER2 testing is not indicated, as amplification is very rare in this subset.^{709,710} NGS panels can be used to detect these biomarkers and have the advantage of also detecting other rare and actionable mutations (eg, *NTRK* and *RET* fusions). The panel strongly discourages the routine use of PET/CT scanning for staging, baseline imaging, or routine follow-up. However, the panel recommends consideration of a preoperative PET/CT scan at baseline in selected cases if prior anatomic imaging indicates the presence of potentially surgically curable M1 disease. The purpose of this PET/CT scan is to evaluate for unrecognized metastatic disease that would preclude the possibility of surgical management. A randomized clinical trial of patients with resectable metachronous metastases assessed the role of PET/CT in the workup of potential curable disease. 987 While there was no impact of PET/CT on survival, surgical management was changed in 8% of patients after PET/CT. For example, resection was not undertaken for 2.7% of patients because additional metastatic disease was identified (ie, bone, peritoneum/omentum, abdominal nodes). In addition, 1.5% of patients had more extensive hepatic resections and 3.4% had additional organ surgery. An additional 8.4% of patients in the PET/CT arm had false-positive results, many of which were investigated with biopsies or additional imaging. A meta-analysis of 18 studies including 1059 patients with hepatic colorectal metastases found that PET or PET/CT results changed management in 24% of patients. Patients with clearly unresectable metastatic disease should not have baseline PET/CT scans. The panel also notes that PET/CT scans should not be used to assess response to chemotherapy, because a PET/CT scan can become transiently negative after chemotherapy (eg, in the presence of necrotic lesions). Palse-positive PET/CT scan results can occur in the presence of tissue inflammation after surgery or infection. An MRI with intravenous contrast can be considered as part of the preoperative evaluation of patients with potentially surgically resectable M1 liver disease. For example, an MRI with contrast may be of use when the PET and CT scan results are inconsistent with respect to the extent of disease in the liver. The criterion of potential surgical cure includes patients with metastatic disease that is not initially resectable but for whom a surgical cure may become possible after preoperative chemotherapy. In most cases, however, the presence of extrahepatic disease will preclude the possibility of resection for cure; *conversion to resectability* for the most part refers to a patient with liver-only disease that, because of involvement of critical structures, cannot be resected unless regression is accomplished with chemotherapy (see *Neoadjuvant Therapy and Conversion to Resectability*, above). Close communication among members of the multidisciplinary treatment team is recommended, including an upfront evaluation by a surgeon experienced in the resection of hepatobiliary or lung metastases. Recommendations for Resectable Synchronous Liver or Lung Metastases When patients present with CRC and synchronous liver metastases, resection of the primary tumor and liver can be performed in a simultaneous or staged approach. 990-999 Historically, in the staged approach, the primary tumor was usually resected first. However, the approach of liver resection before resection of the primary followed by adjuvant chemotherapy is now well-accepted. 991,993,1000,1001 In addition, emerging data suggest that systemic therapy, followed by resection of liver metastases before resection of the primary tumor, might be an effective approach in some patients, although more studies are needed. 1002-1009 Adjuvant chemotherapy following resection of the primary and metastases may be
recommended for pMMR/MSS disease or dMMR/MSI-H disease where checkpoint inhibitor immunotherapy was not given neoadjuvantly, although the benefit of adjuvant chemotherapy in this setting remains controversial. The phase II/III JCOG0603 trial of 300 patients with liver-only CRC metastases compared hepatectomy alone to hepatectomy followed by 12 courses of adjuvant mFOLFOX6. 1010 Five-year DFS was significantly longer with adjuvant chemotherapy compared to hepatectomy alone (49.8% vs. 38.7%; HR, 0.67; 95% CI, 0.50–0.92; P = .006). However, the 5-year OS rate was higher with hepatectomy alone compared to hepatectomy with adjuvant chemotherapy (83.1% vs. 71.2%). If a patient with resectable liver or lung metastases is a candidate for surgery, the panel recommends the following options for pMMR/MSS disease: 1) synchronous or staged colectomy with liver or lung resection^{417,425} followed by adjuvant chemotherapy (FOLFOX [preferred], CAPEOX [preferred], 5-FU/LV, or capecitabine^{305,609}); 2) neoadjuvant chemotherapy for 2 to 3 months (ie, FOLFOX [preferred],⁴¹⁶ CAPEOX [preferred], FOLFIRI [category 2B], or FOLFIRINOX [category 2B]⁵⁹¹) followed by synchronous or staged colectomy with liver or lung resection, then adjuvant chemotherapy; or 3) colectomy followed by chemotherapy (see neoadjuvant options above) and a staged resection of metastatic disease, then adjuvant chemotherapy. For dMMR/MSI-H disease, the first option listed above is an option, although neoadjuvant immunotherapy with a checkpoint inhibitor is the preferred approach. While resection of metastatic disease is the preferred approach, local therapy for metastases may be considered in addition, or instead of, resection in select cases. For dMMR/MSI-H disease, any of the checkpoint inhibitor regimens that are recommended for metastatic disease may be used in the neoadjuvant setting. Overall, combined neoadjuvant and adjuvant treatments should not exceed 6 months. In the case of liver metastases only, HAIC with or without systemic 5-FU/LV (category 2B) remains an option at centers with experience in the surgical and medical oncologic aspects of this procedure. #### Recommendations for Unresectable Synchronous Metastases Patients with dMMR/MSI-H synchronous unresectable metastatic disease should preferentially receive checkpoint inhibitor immunotherapy as their first-line option as long as the patient is a candidate for immunotherapy and no prior immunotherapy has been received. Disease status should be reevaluated every 2 to 3 months, followed by a continuation of immunotherapy; resection, with or without RT; surveillance; or additional lines of systemic therapy based on disease response. For patients with pMMR/MSS metastatic disease that is deemed to be potentially convertible (see *Neoadjuvant Therapy and Conversion to Resectability*, above),¹⁰¹¹ chemotherapy regimens with high response rates should be considered, and these patients should be reevaluated for resection after 2 months of preoperative chemotherapy and every 2 months thereafter while undergoing this therapy. If bevacizumab is included as a component of the conversion therapy, an interval of at least 6 weeks between the last dose of bevacizumab and surgery should be applied, with a 6- to 8-week postoperative period before re-initiation of bevacizumab. Patients with disease converted to a resectable state should undergo synchronized or staged resection of colon and metastatic cancer, including treatment with pre- and postoperative chemotherapy for a preferred total perioperative therapy duration of 6 months. Recommended options for adjuvant therapy for these patients include active systemic therapy regimens for advanced or metastatic disease (category 2B for the use of biologic agents in this setting); observation or a shortened course of chemotherapy can also be considered for patients who have completed preoperative chemotherapy. In the case of liver metastases only, HAIC with or without systemic 5-FU/LV (category 2B) remains an option at centers with experience in the surgical and medical oncologic aspects of this procedure. Ablative therapy of metastatic disease, either alone or in combination with resection, can also be considered when all measurable metastatic disease can be treated (see Management of Metastatic Disease). Patients with disease that is not responding to therapy should receive systemic therapy for advanced or metastatic disease with treatment selection based partly on whether intensive therapy is recommended. Debulking surgery or ablation without curative intent is not recommended. Results from one study suggest that there may be some benefit in both OS and PFS from resection of the primary in the setting of unresectable colorectal metastases. Other systematic reviews and retrospective analyses also have shown a potential benefit. Other Separate analyses of the SEER database and the National Cancer Database also identified a survival benefit of primary tumor resection in this setting. On the other hand, a different analysis of the National Cancer Database came to the opposite conclusion. 1021 The randomized phase III JCOG1007 study also concluded that primary tumor resection followed by chemotherapy in patients with synchronous unresectable metastases conferred no survival benefit over chemotherapy alone. 1022 For the 160 patients enrolled in this study, median OS was 25.9 months with primary tumor resection plus chemotherapy compared to 26.7 months for chemotherapy alone. Three patients on this study died following primary tumor resection due to postoperative complications. The phase III CAIRO4 study has also shown a higher 60-day mortality rate in patients with unresectable mCRC randomized to primary tumor resection followed by systemic therapy (11%) compared to those who were randomized to systemic therapy alone (3%). 1023 Furthermore, the prospective, multicenter phase II NSABP C-10 trial showed that patients with an asymptomatic primary colon tumor and unresectable metastatic disease who received mFOLFOX6 with bevacizumab experienced an acceptable level of morbidity without upfront resection of the primary tumor. 1024 The median OS was 19.9 months. Notably, symptomatic improvement in the primary is often seen with systemic chemotherapy even within the first 1 to 2 weeks. Complications from the intact primary lesion are uncommon in this setting, 454 and its removal delays initiation of systemic chemotherapy. In fact, a systematic review concluded that resection of the primary does not reduce complications and does not improve OS. 1025 Another systematic review and meta-analysis identified five studies that compared open to laparoscopic palliative colectomies in this setting. 1026 The laparoscopic approach resulted in shorter lengths of hospital stays (P < .001), fewer postoperative complications (P = .01), and lower estimated blood loss (P < .001). Overall, the panel believes that the risks of surgery outweigh the possible benefits of resection of asymptomatic primary tumors in the setting of unresectable colorectal metastases. Routine palliative resection of a synchronous primary lesion should therefore only be considered if the patient has an unequivocal imminent risk of obstruction, acute significant bleeding, perforation, or other significant tumor-related symptoms. An intact primary is not a contraindication to bevacizumab use. The risk of GI perforation in the setting of bevacizumab is not decreased by removal of the primary tumor, because large bowel perforations, in general, and perforation of the primary lesion, in particular, are rare. Recommendations for Synchronous Abdominal/Peritoneal Metastases For patients with peritoneal metastases causing obstruction or that may cause imminent obstruction, palliative surgical options include colon resection, diverting colostomy, a bypass of impending obstruction, or stenting, followed by systemic therapy for advanced or metastatic disease. The primary treatment of patients with nonobstructing metastases is chemotherapy. As mentioned above (see *Cytoreductive Debulking with Hyperthermic Intraperitoneal Chemotherapy*), the panel currently believes that the treatment of disseminated carcinomatosis with complete cytoreductive surgery and/or intraperitoneal chemotherapy can be considered in experienced centers for selected patients with limited peritoneal metastases for whom R0 resection can be achieved. However, the significant morbidity and mortality associated with HIPEC, as well as the conflicting data on clinical efficacy, make this approach very controversial. #### **Workup and Management of Metachronous Metastatic Disease** On documentation of metachronous, potentially resectable, metastatic disease with dedicated contrast-enhanced CT or MRI, characterization of the disease extent using PET/CT scan should be considered in select cases if a surgical cure of M1 disease is feasible. PET/CT is used at this juncture to promptly characterize the extent of metastatic disease, and to identify possible sites of extrahepatic disease that could preclude surgery. Specifically, Joyce et al 1027 reported that the preoperative PET changed or precluded curative-intent liver resection in 25% of patients. A randomized clinical trial assessed the role of PET/CT in the workup of patients with resectable metachronous metastases. 987 While there was no impact of PET/CT on survival, surgical management was changed in 8% of patients after PET/CT. This trial is discussed in more detail in *Workup and Management of Synchronous Metastatic Disease*, above. As with other conditions in which stage IV disease is diagnosed, a tumor analysis (metastases or original primary) for *KRAS/NRAS* and *BRAF* mutations and HER2 amplifications, as well as MSI/MMR testing if not previously done, should be performed to define whether targeted therapies can be considered among the potential options (see *Biomarkers for Systemic Therapy*). Close communication
between members of the multidisciplinary treatment team is recommended, including upfront evaluation by a surgeon experienced in the resection of hepatobiliary and lung metastases. The management of metachronous metastatic disease is distinguished from that of synchronous disease through also including an evaluation of the chemotherapy or immunotherapy history of the patient and through the absence of colectomy. Patients with resectable disease are classified according to whether they have undergone previous chemotherapy or immunotherapy. For patients who have resectable pMMR/MSS metastatic disease, treatment is resection with 6 months of perioperative chemotherapy (pre- or postoperative or a combination of both), with choice of regimens based on previous therapy. For patients with resectable dMMR/MSI-H metastatic disease, neoadjuvant immunotherapy with a checkpoint inhibitor is an option, if no previous immunotherapy was given. Locally ablative procedures can be considered instead of or in addition to resection in cases of liver or lung oligometastases (see *Local Therapies for* Metastases, above), but resection is preferred. For patients without a history of chemotherapy use, FOLFOX or CAPEOX is preferred for pMMR/MSS disease, with capecitabine or 5-FU/LV as additional category 2B options. There are also cases when perioperative chemotherapy is not recommended in resectable metachronous disease. In particular, patients with a history of previous chemotherapy and an upfront resection can be observed or may be given an active regimen for advanced disease (category 2B for the use of biologic agents in these settings). Observation is preferred if oxaliplatin-based therapy was previously administered. Patients determined to have unresectable disease through cross-sectional imaging scan (including those considered potentially convertible) should receive an active systemic therapy regimen based on prior chemotherapy or immunotherapy history (see *Second-line or Subsequent Systemic Therapy*, above). In the case of liver metastases only, HAIC with or without systemic 5-FU/LV (category 2B) is an option at centers with experience in the surgical and medical oncologic aspects of this procedure. Patients receiving palliative systemic therapy should be monitored with CT or MRI scans approximately every 2 to 3 months. #### **Endpoints for Advanced CRC Clinical Trials** In the past few years, there has been much debate over what endpoints are most appropriate for clinical trials in advanced CRC. 1029 Quality of life is an outcome that is rarely measured but of unquestioned clinical relevance. 1030 While OS is also of clear clinical relevance, it is often not used because large numbers of patients and long follow-up periods are required. 1030 PFS is often used as a surrogate, but its correlation with OS is inconsistent at best, especially when subsequent lines of therapy are administered. 1030-1032 In 2011, The Grupo Español Multidisciplinar en Cancer Digestivo (GEMCAD) proposed particular aspects of clinical trial design to be incorporated into trials that use PFS as an endpoint. 1033 A study, in which individual patient data from three RCTs were pooled, tested endpoints that take into account subsequent lines of therapy: duration of disease control, which is the sum of PFS times of each active treatment; and time to failure of strategy, which includes intervals between treatment courses and ends when the planned lines of treatment end (because of death, progression, or administration of a new agent). The authors found a better correlation between these endpoints and OS than between PFS and OS. Another alternative endpoint, time to tumor growth, has also been suggested to predict OS. 1034, 1035 Further evaluation of these and other surrogate endpoints is warranted. #### **Post-treatment Surveillance** After curative-intent surgery and adjuvant chemotherapy, if administered, post-treatment surveillance of patients with CRC is performed to evaluate for possible therapeutic complications, discover a recurrence that is potentially resectable for cure, and identify new metachronous neoplasms at a preinvasive stage. An analysis of data from 20,898 patients enrolled in 18 large, adjuvant, randomized trials showed that 80% of recurrences occurred in the first 3 years after surgical resection of the primary tumor, 316 and a another study found that 95% of recurrences occurred in the first 5 years. 1036 #### **Surveillance for Locoregional Disease** Advantages of more intensive follow-up of patients with stage II and/or stage III disease have been shown prospectively in several older studies¹⁰³⁷⁻¹⁰³⁹ and in multiple meta-analyses of RCTs designed to compare low- and high-intensity programs of surveillance.¹⁰⁴⁰⁻¹⁰⁴⁵ Intensive postoperative surveillance has also been suggested to be of benefit to patients with stage I and IIA disease.¹⁰⁴⁶ Furthermore, a population-based report indicates increased rates of resectability and survival in patients treated for local recurrence and distant metastases of CRC in more recent years, thereby providing support for more intensive post-treatment followup in these patients. 1047 Results from the randomized controlled FACS trial of 1202 patients with resected stage I to III disease showed that intensive surveillance imaging or CEA screening resulted in an increased rate of curative-intent surgical treatment compared with a minimum follow-up group that only received testing if symptoms occurred, but no advantage was seen in the CEA and CT combination arm (2.3% in the minimum follow-up group, 6.7% in the CEA group, 8% in the CT group, and 6.6% in the CEA plus CT group). 1048 In this study, no mortality benefit to regular monitoring with CEA, CT, or both was observed compared with minimum follow-up (death rate, 18.2% vs. 15.9%; difference, 2.3%; 95% CI, -2.6% to 7.1%). The authors concluded that any strategy of surveillance is unlikely to provide a large survival advantage over a symptom-based approach. The randomized COLOFOL trial of 2509 patients with stage II or III CRC looked at follow-up testing with CT of the thorax and abdomen and CEA screening, comparing a high-frequency surveillance approach (CT and CEA at 6, 12, 18, 24, and 36 months post-surgery) to a low-frequency approach (CT and CEA at 12 and 36 months post-surgery). 1049 This trial reported no significant difference in 5-year overall mortality or CRC-specific mortality between the two screening approaches. The CEAwatch trial compared usual follow-up care to CEA measurements every 2 months, with imaging performed if CEA increases were seen twice, in 3223 patients at 11 hospitals treated for non-mCRC in the Netherlands. 1050 The intensive CEA surveillance protocol resulted in the detection of more recurrences and recurrences that could be treated with curative intent than usual follow-up, and the time to detection of recurrent disease was shorter. Another randomized trial of 1228 patients found that more intensive surveillance led to earlier detection of recurrences than a less intensive program (less frequent colonoscopy and liver ultrasound and the absence of an annual chest x-ray) but did not affect OS.¹⁰⁵¹ The randomized phase III PRODIGE 13 trial is comparing 5-year OS after intensive radiologic monitoring (abdominal ultrasound, chest/abdomen/pelvis CT, and CEA) with a lower intensity program (abdominal ultrasound and chest x-ray) in patients with resected stage II or III colon or rectal tumors. 1052 A 2020 abstract reporting results from 1995 patients on this trial concluded that the more intensive surveillance program did not provide any benefit in 5-year OS, but did result in more curative intent secondary surgeries for colon cancer. Surgical treatment of recurrence was performed in 40.9% of patients receiving minimal surveillance (no CT, no CEA), 66.3% of patients receiving lower intensity imaging plus CEA, 50.7% of patients receiving no CEA but higher intensity imaging, and 59.5% in the maximum surveillance group with both CEA and CT (P = .0035). ¹⁰⁵³ A 2022 abstract that reported final RFS results from PRODIGE 13 found that, with a median follow-up of 7.8 years, cancer recurrence was detected in 22.3% of patients (89.5% metastatic recurrence, 10.5% local recurrence). 1054 Five-year RFS rates were 73.2% with CT surveillance versus 68.2% without CT (P = .052) while they were 70.4% and 71.0% with and without CEA screening, respectively. The authors concluded that intensive imaging, but not CEA screening, provided an increased opportunity for curative-intent surgical treatment of recurrence and a trend toward better 5-year RFS with CT surveillance. Clearly, controversies remain regarding selection of optimal strategies for following up patients after potentially curative CRC surgery, and the panel's recommendations are based mainly on consensus. The panel endorses surveillance as a means to identify patients with potentially curable metastatic disease with surgical resection. For patients with stage I disease, the panel believes that a less intensive surveillance schedule is appropriate because of the low risk of recurrence and the harms associated with surveillance. Possible harms include radiation exposure with repeated CT scans, psychological stress associated with surveillance visits and scans, and stress and risks from following up on false-positive results. Therefore, for patients with stage I disease, the panel recommends colonoscopy at 1 year after surgery. Repeat colonoscopy is recommended at 3 years, and then every 5 years thereafter, unless advanced adenoma (villous polyp, polyp >1 cm, or high-grade dysplasia) is found. In this case, colonoscopy should be repeated in 1 year. 1045 The following panel recommendations for post-treatment surveillance pertain to patients with stage II/III disease who have undergone successful treatment (ie, no known residual disease). History and physical examination should be given every 3 to
6 months for 2 years, and then every 6 months for a total of 5 years. A CEA test (also see Managing an Increasing CEA Level, below) is recommended at baseline and every 3 to 6 months for 2 years, 1055 then every 6 months for a total of 5 years for patients with stage III disease and those with stage II disease if the clinician determines that the patient is a potential candidate for aggressive curative surgery. 1040, 1055 Colonoscopy is recommended at approximately 1 year after resection (or at 3-6 months postresection if not performed preoperatively because of an obstructing lesion). Repeat colonoscopy is typically recommended at 3 years, and then every 5 years thereafter, unless follow-up colonoscopy indicates advanced adenoma (villous polyp, polyp >1 cm, or high-grade dysplasia), in which case colonoscopy should be repeated in 1 year. 1045 More frequent colonoscopies may be indicated in patients who present with colon cancer before 50 years of age. Chest, abdominal, and pelvic CT scan are recommended every 6 to 12 months (category 2B for more frequently than annually) for up to 5 years in patients with stage III disease and those with stage II disease at a high risk for recurrence. 1040, 1056 Routine CEA monitoring and CT scanning are not recommended beyond 5 years. Use of PET/CT to monitor for disease recurrence is not recommended.^{1056,1057} The CT that accompanies a PET/CT is usually a noncontrast CT, and therefore not of ideal quality for routine surveillance. Surveillance colonoscopies are primarily aimed at identifying and removing metachronous polyps, because data show that patients with a history of CRC have an increased risk of developing second cancers, particularly in the first 2 years after resection. 1045,1058 Furthermore, use of post-treatment surveillance colonoscopy has not been shown to improve survival through the early detection of recurrence of the original CRC. 1045 The recommended frequency of post-treatment surveillance colonoscopies is higher (ie, annually) for patients with Lynch syndrome. 29 CT scan is recommended to monitor for the presence of potentially resectable metastatic lesions, primarily in the lung and liver. 1040 Hence, CT scan is not routinely recommended in asymptomatic patients who are not candidates for potentially curative resection of liver or lung metastases. 1040, 1056 The ASCO Clinical Practice Guidelines Committee has endorsed the Follow-up Care, Surveillance Protocol, and Secondary Prevention Measures for Survivors of Colorectal Cancer from Cancer Care Ontario (CCO). 1059,1060 These guidelines differ only slightly from the surveillance recommendations in these NCCN Guidelines for Colon Cancer. While ASCO/CCO recommend abdominal and chest CT annually for 3 years in patients with stage II and III disease, the NCCN Panel recommends semi-annual to annual scans for 5 years (category 2B for more frequent than annual scanning). The panel bases its recommendation on the fact that approximately 10% of patients will recur after 3 years. 316,1036 The American Society of Colon and Rectal Surgeons also released surveillance guidelines, which are also very similar to NCCN surveillance recommendations. 1061 One exception is the inclusion of intensive surveillance for patients with resected stage I colon or rectal cancer if the provider deems the patient to be at increased risk for recurrence. #### Surveillance for Metastatic Disease Patients who had resection of mCRC can undergo subsequent curative-intent resection of recurrent disease (see *Surgical Management of Colorectal Metastases*, above). A retrospective analysis of 952 patients who underwent resection at Memorial Sloan Kettering Cancer Center showed that 27% of patients with recurrent disease underwent curative-intent resection and that 25% of those patients (6% of recurrences; 4% of the initial population) were free of disease for 36 months or more. ¹⁰⁶² Panel recommendations for surveillance of patients with stage IV CRC with no evidence of disease (NED) after curative-intent surgery and subsequent adjuvant treatment are similar to those listed for patients with stage II/III disease, except that certain evaluations are performed more frequently. Specifically, the panel recommends that these patients undergo contrast-enhanced CT scan of the chest, abdomen, and pelvis every 3 to 6 months in the first 2 years after adjuvant treatment (category 2B for frequency <6 months) and then every 6 to 12 months for up to a total of 5 years. CEA testing is recommended every 3 to 6 months for the first 2 years and then every 6 months for a total of 5 years, as in earlystage disease. Again, use of PET/CT scans for surveillance is not recommended. An analysis of patients with resected or ablated colorectal liver metastases found that the frequency of surveillance imaging did not correlate with time to second procedure or median survival duration. 1063 Those scanned once per year survived a median of 54 versus 43 months for those scanned 3 to 4 times per year (P = .08), suggesting that annual scans may be sufficient in this population. #### Managing an Increasing CEA Level Work up for patients with an elevated CEA level after resection should include colonoscopy; chest, abdominal, and pelvic CT scans; physical examination; and consideration of PET/CT scan. If imaging study results are normal in the face of a rising CEA, repeat CT scans are recommended every 3 months until either disease is identified or CEA level stabilizes or declines. In a retrospective chart review at Memorial Sloan Kettering Cancer Center, approximately half of elevations in CEA levels after R0 resection of locoregional CRC were false positives, with most being single high readings or repeat readings in the range of 5 to 15 ng/mL. ¹⁰⁶⁴ In this study, false-positive results greater than 15 ng/mL were rare, and all results greater than 35 ng/mL represented true positives. Following a systematic review and meta-analysis, the pooled sensitivity and specificity of CEA at a cutoff of 10 ng/mL were calculated at 68% (95% CI, 53–79) and 97% (95% CI, 90–99), respectively. ^{1065,1066} In the first 2 years post-resection, a CEA cutoff of 10 ng/mL is estimated to detect 20 recurrences, miss 10 recurrences, and result in 29 false positives. Panel opinion was divided on the usefulness of PET/CT scan in the scenario of an elevated CEA with negative, good-quality CT scans (ie, some panel members favored use of PET/CT in this scenario whereas others noted that the likelihood of PET/CT identifying surgically curable disease in the setting of negative good-quality CT scans is vanishingly small). A systematic review and meta-analysis found 11 studies (510 patients) that addressed the use of PET/CT in this setting. The pooled estimates of sensitivity and specificity for the detection of tumor recurrence were 94.1% (95% CI, 89.4–97.1) and 77.2% (95% CI, 66.4–85.9), respectively. An analysis of outcomes of 88 patients treated for CRC under surveillance who had normal or equivocal conventional imaging results with an elevated CEA found that PET/CT had a sensitivity of 88% and a specificity of 88% for the detection of recurrences. 1068 Use of PET/CT scans in this scenario is permissible within these guidelines. The panel does not recommend a so-called blind or CEA-directed laparotomy or laparoscopy for patients whose workup for an increased CEA level is negative, ¹⁰⁶⁹ nor does it recommend use of anti-CEA-radiolabeled scintigraphy. #### Survivorship The panel recommends that a prescription for survivorship and transfer of care to the primary care physician be written. 1070 The oncologist and primary care provider should have defined roles in the surveillance period, with roles communicated to the patient. The care plan should include an overall summary of treatments received, including surgeries, radiation treatments, and systemic therapies. The possible expected time to resolution of acute toxicities, long-term effects of treatment, and possible late sequelae of treatment should be described. Finally, surveillance and health behavior recommendations should be part of the care plan. Disease preventive measures, such as immunizations; early disease detection through periodic screening for second primary cancers (eg, breast, cervical, or prostate cancers); and routine good medical care and monitoring are recommended (see the NCCN Guidelines for Survivorship). Additional health monitoring should be performed as indicated under the care of a primary care physician. Survivors are encouraged to maintain a therapeutic relationship with a primary care physician throughout their lifetime. 1071 Other recommendations include monitoring for late sequelae of colon cancer or the treatment of colon cancer, such as chronic diarrhea or incontinence (eg, patients with stoma). 1072-1077 Other long-term problems common to CRC survivors include oxaliplatin-induced peripheral neuropathy, fatigue, insomnia, cognitive dysfunction, body image issues (especially as related to an ostomy), and emotional or social distress. 1078-1084 Specific management interventions to address these and other side effects are described in a review, 1085 and a survivorship care plan for patients with CRC have been published. 1086 The NCCN Guidelines for Survivorship provide screening, evaluation, and treatment recommendations for common consequences of cancer and cancer treatment to aid health care professionals who work with survivors of adult-onset cancer in the post-treatment period, including those in specialty cancer survivor clinics and primary care practices. The NCCN Guidelines for Survivorship include many topics with potential relevance to survivors of CRC, including Anxiety, Depression, and Distress; Cognitive Dysfunction; Fatigue; Pain; Sexual Dysfunction; Healthy Lifestyles; and Immunizations. Concerns related to employment, insurance, and disability are also discussed. The American Cancer Society has also
established guidelines for the care of survivors of CRC, including surveillance for recurrence, screening for subsequent primary malignancies, the management of physical and psychosocial effects of cancer and its treatment, and promotion of healthy lifestyles.¹⁰⁷¹ #### **Healthy Lifestyles for Survivors of CRC** Evidence indicates that certain lifestyle characteristics, such as smoking cessation, maintaining a healthy BMI, engaging in regular exercise, and making certain dietary choices are associated with improved outcomes and quality of life after treatment for colon cancer. In a prospective observational study of patients with stage III colon cancer enrolled in the CALGB 89803 adjuvant chemotherapy trial, DFS was found to be directly related to the amount of exercise in which the patients engaged. ¹⁰⁸⁷ In addition, a study of a large cohort of men treated for stage I through III CRC showed an association between increased physical activity and lower rates of CRC-specific mortality and overall mortality. 1088 More recent data support the conclusion that physical activity improves outcomes. In a cohort of more than 2000 survivors of non-mCRC, those who spent more time in recreational activity had a lower mortality than those who spent more leisure time sitting. 1089 In addition, evidence suggests that both pre- and post-diagnosis physical activity decreases CRC mortality. Women enrolled in the Women's Health Initiative study who subsequently developed CRC had lower CRC-specific mortality (HR, 0.68; 95% CI, 0.41–1.13) and all-cause mortality (HR, 0.63; 95% CI, 0.42–0.96) if they reported high levels of physical activity. 1090 Similar results were seen in other studies and in meta-analyses of prospective studies. 1091-1094 Dietary and physical activity interventions were also found to have positive effects on quality of life and depression for CRC survivors in a randomized study. 1095 A retrospective study of patients with stage II and III colon cancer enrolled in NSABP trials from 1989 to 1994 showed that patients with a BMI of 35 kg/m² or greater had an increased risk of disease recurrence and death. 1096 Data from the ACCENT database also found that pre-diagnosis BMI has a prognostic impact on outcomes in patients with stage II/III CRC undergoing adjuvant therapy. 1097 An analysis of participants in the Cancer Prevention Study-II Nutrition Cohort who subsequently developed non-mCRC found that pre-diagnosis obesity but not post-diagnosis obesity was associated with higher all-cause and CRC-specific mortality. 1098 A meta-analysis of prospective cohort studies found that pre-diagnosis obesity was associated with increased CRC-specific and all-cause mortality. 1099 Other analyses confirm the increased risk for recurrence and death in patients with obesity. 92,1100-1103 In contrast, pooled data from first-line clinical trials in the ARCAD database indicate that a low BMI may be associated with an increased risk of progression and death in the metastatic setting, whereas a high BMI may not be.¹¹⁰⁴ In addition, results of one retrospective observational study of a cohort of 3408 patients with resected stage I to III CRC suggest that the relationship between mortality and BMI might be U shaped, with the lowest mortality for those with BMI 28 kg/m².¹¹⁰⁵ However, several possible explanations for this so-called "obesity paradox" have been suggested.¹¹⁰⁶ Overall, the panel believes that survivors of CRC should be encouraged to achieve and maintain a healthy body weight (see the NCCN Guidelines for Survivorship). A diet consisting of more fruits, vegetables, poultry, and fish; less red meat; more whole grains; and fewer refined grains and concentrated sweets has been found to be associated with an improved outcome in terms of cancer recurrence or death. 1107 There is also some evidence that higher postdiagnosis intake of total milk and calcium may be associated with a lower risk of death in patients with stage I, II, or III CRC.98 Analysis of the CALGB 89803 trial found that higher dietary glycemic load was also associated with an increased risk of recurrence and mortality in patients with stage III disease. 1108 Another analysis of the data from CALGB 89803 found an association between high intake of sugar-sweetened beverages and an increased risk of recurrence and death in patients with stage III colon cancer. 1109 The link between red and processed meats and mortality in survivors of non-mCRC has been further supported by data from the Cancer Prevention Study II Nutrition Cohort, in which survivors with consistently high intake had a higher risk of CRC-specific mortality than those with low intake (RR, 1.79; 95% CI, 1.11-2.89).90 A discussion of lifestyle characteristics that may be associated with a decreased risk of colon cancer recurrence, such as those recommended by the American Cancer Society, 1110 also provides "a teachable moment" for the promotion of overall health, and an opportunity to encourage patients to make choices and changes compatible with a healthy lifestyle. In addition, telephone-based health behavior coaching has been shown to have a positive effect on physical activity, diet, and BMI in survivors of CRC, suggesting that survivors may be open to health behavior change.¹¹¹¹ Therefore, survivors of CRC should be encouraged to maintain a healthy body weight throughout life; adopt a physically active lifestyle (at least 30 minutes of moderate-intensity activity on most days of the week); consume a healthy diet with emphasis on plant sources; eliminate or limit alcohol consumption; and quit smoking. Activity recommendations may require modification based on treatment sequelae (ie, ostomy, neuropathy), and diet recommendations may be modified based on the severity of bowel dysfunction. Days of the week of the severity of bowel dysfunction. #### **Secondary Chemoprevention for CRC Survivors** Limited data suggest a link between post-colorectal-cancer-diagnosis statin use and increased survival. A meta-analysis that included four studies found that post-diagnosis statin use increased OS (HR, 0.76; 95% CI, 0.68–0.85; P< .001) and cancer-specific survival (HR, 0.70; 95% CI, 0.60–0.81; P< .001). Abundant data show that low-dose aspirin therapy after a diagnosis of CRC decreases the risk of recurrence and death. 1115-1121 For example, a population-based, observational, retrospective cohort study of 23,162 patients with CRC in Norway found that post-diagnosis aspirin use was associated with improved CRC-specific survival (HR, 0.85; 95% CI, 0.79–0.92) and OS (HR, 0.95; 95% CI, 0.90–1.01). 1115 Some evidence suggests that tumor mutations in *PIK3CA* may be predictive for response to aspirin, although the data are somewhat inconsistent and other predictive markers have also been suggested. 1117,1122-1127 In addition, a meta-analysis of 15 RCTs showed that while non-aspirin NSAIDs were better for preventing recurrence, low-dose aspirin was safer and thereby had a more favorable risk-to-benefit profile. 1128 Based on these data, the panel believes that survivors of CRC can consider taking 325 mg aspirin daily to reduce their risk of recurrence and death. Importantly, aspirin may increase the risk of GI bleeding and hemorrhagic stroke, and these risks should be discussed with CRC survivors.¹¹²⁹ #### **Summary** The panel believes that a multidisciplinary approach is necessary for managing CRC. The panel endorses the concept that treating patients in a clinical trial has priority over standard or accepted therapy. The panel stresses the importance of determining MSI and MMR status at diagnosis as treatment recommendations can vary considerably at all stages of colon cancer based on these biomarker results. The recommended surgical procedure for resectable colon cancer is an en bloc resection and adequate lymphadenectomy. Adequate pathologic assessment of the resected lymph nodes is important with a goal of evaluating at least 12 nodes. Adjuvant chemotherapy is recommended for patients with stage III disease and is also an option for some patients with high-risk stage II disease. The preferred regimens for adjuvant therapy, as well as the recommended duration of therapy, depends on the pathologic stage of the tumor and the risk of recurrence. Patients with resectable T4b tumors or with bulky nodal disease may be treated with neoadjuvant systemic therapy prior to colectomy. Patients with metastatic disease in the liver or lung should be considered for surgical resection if they are candidates for surgery and if all original sites of disease are amenable to resection (R0) and/or ablation. Six months of perioperative systemic therapy should be administered to patients with synchronous or metachronous resectable metastatic disease. When a response to systemic therapy would likely convert a patient from an unresectable to a resectable disease state (ie, conversion therapy), this therapy should be initiated. The recommended post-treatment surveillance program for patients with resected disease includes serial CEA determinations; periodic chest, abdominal, and pelvic CT scans; colonoscopic evaluations; and a survivorship plan to manage long-term side effects of treatment, facilitate disease prevention, and promote a healthy lifestyle. Recommendations for patients with disseminated metastatic disease represent a continuum of care in which lines of treatment are blurred rather than discrete. Principles to consider at initiation of therapy include pre-planned strategies for altering therapy for patients in both the presence and absence of disease progression, including plans for adjusting therapy for patients who experience certain toxicities. In addition to fluoropyrimidine-, oxaliplatin-, and/or irinotecan-containing chemotherapy regimens, immunotherapy and targeted therapy regimens are becoming an increasingly important part of the mCRC treatment landscape. Combination of a biologic agent (eg, bevacizumab, cetuximab,
panitumumab) with some of the chemotherapy regimens is an option, depending on available data. Systemic therapy options for patients with progressive disease depend on the choice of initial therapy and biomarker status of the tumor. #### References - 1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians 2023;73:17-48. Available at: https://pubmed.ncbi.nlm.nih.gov/36633525/. - 2. Cheng L, Eng C, Nieman LZ, et al. Trends in colorectal cancer incidence by anatomic site and disease stage in the United States from 1976 to 2005. Am J Clin Oncol 2011;34:573-580. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21217399. - 3. Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020;70:145-164. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32133645. - 4. Bailey CE, Hu CY, You YN, et al. Increasing disparities in the agerelated incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg 2014:1-6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25372703. - 5. Weinberg BA, Marshall JL, Salem ME. The Growing Challenge of Young Adults With Colorectal Cancer. Oncology (Williston Park) 2017;31:381-389. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28516436. - 6. Amin MB, Edge SB, Greene F, et al., eds. AJCC Cancer Staging Manual, 8th ed. New York: Springer International Publishing; 2017. - 7. PubMed Overview. Available at: https://pubmed.ncbi.nlm.nih.gov/about/. Accessed March 9, 2023. - 8. Ahsan H, Neugut AI, Garbowski GC, et al. Family history of colorectal adenomatous polyps and increased risk for colorectal cancer. Ann Intern Med 1998;128:900-905. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9634428. - 9. Bonelli L, Martines H, Conio M, et al. Family history of colorectal cancer as a risk factor for benign and malignant tumours of the large bowel. A case-control study. Int J Cancer 1988;41:513-517. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3356486. - 10. Hemminki K, Eng C. Clinical genetic counselling for familial cancers requires reliable data on familial cancer risks and general action plans. J Med Genet 2004;41:801-807. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15520403. - 11. Hemminki K, Chen B. Familial risk for colorectal cancers are mainly due to heritable causes. Cancer Epidemiol Biomarkers Prev 2004;13:1253-1256. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15247139. - 12. Quintero E, Carrillo M, Leoz ML, et al. Risk of advanced neoplasia in first-degree relatives with colorectal cancer: a large multicenter cross-sectional study. PLoS Med 2016;13:e1002008. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27138769. - 13. Hampel H, Frankel WL, Martin E, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 2008;26:5783-5788. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18809606. - 14. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med 2003;348:919-932. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12621137. - 15. Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. Am J Gastroenterol 2006;101:385-398. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16454848. - 16. Hennink SD, van der Meulen-de Jong AE, Wolterbeek R, et al. Randomized comparison of surveillance intervals in familial colorectal cancer. J Clin Oncol 2015;33:4188-4193. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26527788. - 17. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015;21:1350-1356. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26457759. - 18. Aaltonen LA, Salovaara R, Kristo P, et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med 1998;338:1481-1487. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9593786. - 19. Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 2005;352:1851-1860. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15872200. - 20. Hendriks YM, de Jong AE, Morreau H, et al. Diagnostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin 2006;56:213-225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16870997. - 21. Beamer LC, Grant ML, Espenschied CR, et al. Reflex immunohistochemistry and microsatellite instability testing of colorectal tumors for Lynch syndrome among US cancer programs and follow-up of abnormal results. J Clin Oncol 2012;30:1058-1063. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22355048. - 22. Burt RW. Who should have genetic testing for the Lynch syndrome? Ann Intern Med 2011;155:127-128. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21768586. - 23. Ward RL, Hicks S, Hawkins NJ. Population-based molecular screening for Lynch syndrome: implications for personalized medicine. J Clin Oncol 2013;31:2554-2562. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23733757. - 24. Matloff J, Lucas A, Polydorides AD, Itzkowitz SH. Molecular tumor testing for Lynch syndrome in patients with colorectal cancer. J Natl Compr Canc Netw 2013;11:1380-1385. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24225971. - 25. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 2009;11:35-41. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19125126. - 26. Ladabaum U, Wang G, Terdiman J, et al. Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med 2011;155:69-79. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21768580. - 27. Palomaki GE, McClain MR, Melillo S, et al. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med 2009;11:42-65. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19125127. - 28. Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. J Mol Diagn 2017;19:187-225. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28185757. - 29. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Am J Gastroenterol 2014;109:1159-1179. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25070057. - 30. Rubenstein JH, Enns R, Heidelbaugh J, et al. American Gastroenterological Association Institute Guideline on the Diagnosis and Management of Lynch Syndrome. Gastroenterology 2015;149:777-782. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26226577. - 31. Heald B, Plesec T, Liu X, et al. Implementation of universal microsatellite instability and immunohistochemistry screening for diagnosing lynch syndrome in a large academic medical center. J Clin Oncol 2013;31:1336-1340. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23401454. - 32. Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol 2014;2:76-89. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24622671. 33. Chung M, Lee J, Terasawa T, et al. Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. Preventive Services Task Force. Ann Intern Med 2011;155:827-838. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22184690. 34. Gorham ED, Garland CF, Garland FC, et al. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med 2007;32:210-216. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17296473. - 35. Lappe JM, Travers-Gustafson D, Davies KM, et al. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 2007;85:1586-1591. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17556697. - 36. Ma Y, Zhang P, Wang F, et al. Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J Clin Oncol 2011;29:3775-3782. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21876081. - 37. Ekmekcioglu C, Haluza D, Kundi M. 25-Hydroxyvitamin D Status and Risk for Colorectal Cancer and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Epidemiological Studies. Int J Environ Res Public Health 2017;14:127. Available at:
https://www.ncbi.nlm.nih.gov/pubmed/28134804. - 38. McCullough ML, Zoltick ES, Weinstein SJ, et al. Circulating Vitamin D and Colorectal Cancer Risk: An International Pooling Project of 17 Cohorts. JNCI: Journal of the National Cancer Institute 2019;111:158-169. Available at: http://dx.doi.org/10.1093/jnci/djy087. - 39. Fedirko V, Riboli E, Tjonneland A, et al. Prediagnostic 25-hydroxyvitamin D, VDR and CASR polymorphisms, and survival in patients with colorectal cancer in western European populations. Cancer Epidemiol Biomarkers Prev 2012;21:582-593. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22278364. 40. Ng K, Meyerhardt JA, Wu K, et al. Circulating 25-hydroxyvitamin d levels and survival in patients with colorectal cancer. J Clin Oncol 2008;26:2984-2991. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18565885. - 41. Zgaga L, Theodoratou E, Farrington SM, et al. Plasma vitamin D concentration influences survival outcome after a diagnosis of colorectal cancer. J Clin Oncol 2014;32:2430-2439. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25002714. - 42. Yuan C, Sato K, Hollis BW, et al. Plasma 25-Hydroxyvitamin D Levels and Survival in Patients with Advanced or Metastatic Colorectal Cancer: Findings from CALGB/SWOG 80405 (Alliance). Clin Cancer Res 2019;25:7497-7505. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31548349. - 43. Maalmi H, Ordonez-Mena JM, Schottker B, Brenner H. Serum 25-hydroxyvitamin D levels and survival in colorectal and breast cancer patients: systematic review and meta-analysis of prospective cohort studies. Eur J Cancer 2014;50:1510-1521. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24582912. - 44. Ou B, Zhao J, Guan S, Lu A. Plasma 25-hydroxyvitamin D levels and survival of colorectal cancer patients: a meta-analysis. Eur J Cancer 2015;51:786-788. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25746389. - 45. Baron JA, Barry EL, Mott LA, et al. A trial of calcium and vitamin D for the prevention of colorectal adenomas. N Engl J Med 2015;373:1519-1530. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26465985. - 46. Barry EL, Peacock JL, Rees JR, et al. Vitamin D Receptor Genotype, Vitamin D3 Supplementation, and Risk of Colorectal Adenomas: A Randomized Clinical Trial. JAMA Oncol 2017;3:628-635. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27978548. - 47. Lewis C, Xun P, He K. Vitamin D supplementation and quality of life following diagnosis in stage II colorectal cancer patients: a 24-month prospective study. Support Care Cancer 2016;24:1655-1661. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26408324. 48. Jeffreys M, Redaniel MT, Martin RM. The effect of pre-diagnostic vitamin D supplementation on cancer survival in women: a cohort study within the UK Clinical Practice Research Datalink. BMC Cancer 2015;15:670. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26458897. - 49. Urashima M, Ohdaira H, Akutsu T, et al. Effect of Vitamin D Supplementation on Relapse-Free Survival Among Patients With Digestive Tract Cancers: The AMATERASU Randomized Clinical Trial. Jama 2019;321:1361-1369. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30964526. - 50. Ng K, Nimeiri HS, McCleary NJ, et al. Effect of High-Dose vs Standard-Dose Vitamin D3 Supplementation on Progression-Free Survival Among Patients With Advanced or Metastatic Colorectal Cancer: The SUNSHINE Randomized Clinical Trial. Jama 2019;321:1370-1379. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30964527. - 51. Ross AC, Taylor CL, Yaktine AL, Valle HBD, eds. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US); 2011. - 52. Beaugerie L, Svrcek M, Seksik P, et al. Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterology 2013;145:166-175 e168. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23541909. - 53. Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 2013;24:1207-1222. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23563998. - 54. Lutgens MW, van Oijen MG, van der Heijden GJ, et al. Declining risk of colorectal cancer in inflammatory bowel disease: an updated meta-analysis of population-based cohort studies. Inflamm Bowel Dis 2013;19:789-799. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23448792. - 55. Cheng J, Chen Y, Wang X, et al. Meta-analysis of prospective cohort studies of cigarette smoking and the incidence of colon and rectal cancers. Eur J Cancer Prev 2014;24:6-15. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24722538. - 56. De Bruijn KM, Arends LR, Hansen BE, et al. Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg 2013;100:1421-1429. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24037561. - 57. Esposito K, Chiodini P, Capuano A, et al. Colorectal cancer association with metabolic syndrome and its components: a systematic review with meta-analysis. Endocrine 2013;44:634-647. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23546613. - 58. Kitahara CM, Berndt SI, de Gonzalez AB, et al. Prospective investigation of body mass index, colorectal adenoma, and colorectal cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. J Clin Oncol 2013;31:2450-2459. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23715565. - 59. Klatsky AL, Li Y, Nicole Tran H, et al. Alcohol intake, beverage choice, and cancer: a cohort study in a large kaiser permanente population. Perm J 2015;19:28-34. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25785639. - 60. Keum N, Greenwood DC, Lee DH, et al. Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst 2015;107. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25618901. - 61. Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016;354:i3857. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27510511. - 62. Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer--viewpoint of the IARC Working Group. N Engl J Med 2016;375:794-798. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/27557308. - 63. Luo W, Cao Y, Liao C, Gao F. Diabetes mellitus and the incidence and mortality of colorectal cancer: a meta-analysis of 24 cohort studies. Colorectal Dis 2012;14:1307-1312. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23046351. - 64. Ma Y, Yang Y, Wang F, et al. Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One 2013;8:e53916. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23349764. - 65. Magalhaes B, Peleteiro B, Lunet N. Dietary patterns and colorectal cancer: systematic review and meta-analysis. Eur J Cancer Prev 2012;21:15-23. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21946864. - 66. Moore SC, Lee IM, Weiderpass E, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med 2016;176:816-825. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27183032. - 67. Parajuli R, Bjerkaas E, Tverdal A, et al. The increased risk of colon cancer due to cigarette smoking may be greater in women than men. Cancer Epidemiol Biomarkers Prev 2013;22:862-871. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23632818. - 68. Schmid D, Leitzmann MF. Television viewing and time spent sedentary in relation to cancer risk: a meta-analysis. J Natl Cancer Inst 2014;106. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24935969. - 69. Shen D, Mao W, Liu T, et al. Sedentary behavior and incident cancer: a meta-analysis of prospective studies. PLoS One 2014;9:e105709. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25153314. - 70. Vieira AR, Abar L, Chan DSM, et al. Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort - studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann Oncol 2017;28:1788-1802. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28407090. - 71. Botteri E, Borroni E, Sloan EK, et al. Smoking and colorectal cancer risk, overall and by molecular subtypes: A meta-analysis. Am J Gastroenterol 2020;115:1940-1949. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32773458. - 72. Aleksandrova K, Pischon T, Jenab M, et al. Combined impact of healthy lifestyle factors on colorectal cancer: a large European cohort study.
BMC Med 2014;12:168. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25319089. - 73. Song M, Giovannucci E. Preventable incidence and mortality of carcinoma associated with lifestyle factors among white adults in the United States. JAMA Oncol 2016;2:1154-1161. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27196525. - 74. Kohler LN, Garcia DO, Harris RB, et al. Adherence to diet and physical activity cancer prevention guidelines and cancer outcomes: a systematic review. Cancer Epidemiol Biomarkers Prev 2016;25:1018-1028. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27340121. - 75. Keum N, Aune D, Greenwood DC, et al. Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies. Int J Cancer 2014;135:1940-1948. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24623471. - 76. Murphy N, Norat T, Ferrari P, et al. Consumption of dairy products and colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). PLoS One 2013;8:e72715. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24023767. - 77. Ralston RA, Truby H, Palermo CE, Walker KZ. Colorectal cancer and nonfermented milk, solid cheese, and fermented milk consumption: a systematic review and meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2014;54:1167-1179. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24499149. - 78. Orlich MJ, Singh PN, Sabate J, et al. Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Intern Med 2015;175:767-776. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25751512. - 79. Yu XF, Zou J, Dong J. Fish consumption and risk of gastrointestinal cancers: a meta-analysis of cohort studies. World J Gastroenterol 2014;20:15398-15412. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25386090. - 80. Zhu B, Sun Y, Qi L, et al. Dietary legume consumption reduces risk of colorectal cancer: evidence from a meta-analysis of cohort studies. Sci Rep 2015;5:8797. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25739376. - 81. Cao Y, Nishihara R, Wu K, et al. Population-wide impact of long-term use of aspirin and the risk for cancer. JAMA Oncol 2016;2:762-769. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26940135. - 82. Chan AT, Giovannucci EL, Meyerhardt JA, et al. Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA 2005;294:914-923. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16118381. - 83. Flossmann E, Rothwell PM, British Doctors Aspirin T, the UKTIAAT. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 2007;369:1603-1613. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17499602. - 84. Friis S, Poulsen AH, Sorensen HT, et al. Aspirin and other non-steroidal anti-inflammatory drugs and risk of colorectal cancer: a Danish cohort study. Cancer Causes Control 2009;20:731-740. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19122977. - 85. Friis S, Riis AH, Erichsen R, et al. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case-control study. Ann Intern Med 2015;163:347-355. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26302241. - 86. Rothwell PM, Wilson M, Elwin CE, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 2010;376:1741-1750. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20970847. - 87. Guirguis-Blake JM, Evans CV, Perdue LA, et al. Aspirin use to prevent cardiovascular disease and colorectal cancer: Updated evidence report and systematic review for the us preventive services task force. JAMA 2022;327:1585-1597. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35471507. - 88. Bibbins-Domingo K, Force USPST. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2016;164:836-845. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27064677. - 89. Force USPST, Davidson KW, Barry MJ, et al. Aspirin Use to Prevent Cardiovascular Disease: US Preventive Services Task Force Recommendation Statement. JAMA 2022;327:1577-1584. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35471505. - 90. McCullough ML, Gapstur SM, Shah R, et al. Association between red and processed meat intake and mortality among colorectal cancer survivors. J Clin Oncol 2013;31:2773-2782. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23816965. - 91. Phipps AI, Shi Q, Newcomb PA, et al. Associations between cigarette smoking status and colon cancer prognosis among participants in North Central Cancer Treatment group phase III trial N0147. J Clin Oncol 2013;31:2016-2023. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23547084. - 92. Sinicrope FA, Foster NR, Yoon HH, et al. Association of obesity with DNA mismatch repair status and clinical outcome in patients with stage II or III colon carcinoma participating in NCCTG and NSABP adjuvant chemotherapy trials. J Clin Oncol 2012;30:406-412. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22203756. - 93. Walter V, Jansen L, Hoffmeister M, Brenner H. Smoking and survival of colorectal cancer patients: systematic review and meta-analysis. Ann Oncol 2014;25:1517-1525. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24692581. - 94. Yang B, Jacobs EJ, Gapstur SM, et al. Active smoking and mortality among colorectal cancer survivors: the Cancer Prevention Study II nutrition cohort. J Clin Oncol 2015;33:885-893. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25646196. - 95. Song M, Zhang X, Meyerhardt JA, et al. Marine omega-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut 2016;66:1790-1796. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27436272. - 96. Morris EJ, Penegar S, Whitehouse LE, et al. A retrospective observational study of the relationship between family history and survival from colorectal cancer. Br J Cancer 2013;108:1502-1507. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23511565. - 97. Dik VK, Murphy N, Siersema PD, et al. Prediagnostic intake of dairy products and dietary calcium and colorectal cancer survival-results from the EPIC cohort study. Cancer Epidemiol Biomarkers Prev 2014;23:1813-1823. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24917183. - 98. Yang B, McCullough ML, Gapstur SM, et al. Calcium, vitamin D, dairy products, and mortality among colorectal cancer survivors: the Cancer Prevention Study-II Nutrition cohort. J Clin Oncol 2014;32:2335-2343. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24958826. - 99. Bu WJ, Song L, Zhao DY, et al. Insulin therapy and the risk of colorectal cancer in patients with type 2 diabetes: a meta-analysis of observational studies. Br J Clin Pharmacol 2014;78:301-309. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25099257. - 100. Cardel M, Jensen SM, Pottegard A, et al. Long-term use of metformin and colorectal cancer risk in type II diabetics: a population-based case-control study. Cancer Med 2014;3:1458-1466. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25091592. - 101. Guraya SY. Association of type 2 diabetes mellitus and the risk of colorectal cancer: A meta-analysis and systematic review. World J Gastroenterol 2015;21:6026-6031. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26019469. - 102. Karlstad O, Starup-Linde J, Vestergaard P, et al. Use of insulin and insulin analogs and risk of cancer systematic review and meta-analysis of observational studies. Curr Drug Saf 2013;8:333-348. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24215311. - 103. Rokkas T, Portincasa P. Colon neoplasia in patients with type 2 diabetes on metformin: A meta-analysis. Eur J Intern Med 2016;33:60-66. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27318643. - 104. Sehdev A, Shih YC, Vekhter B, et al. Metformin for primary colorectal cancer prevention in patients with diabetes: a case-control study in a US population. Cancer 2015;121:1071-1078. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25424411. - 105. Singh S, Singh H, Singh PP, et al. Antidiabetic medications and the risk of colorectal cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2013;22:2258-2268. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24042261. - 106. Zhang ZJ, Li S. The prognostic value of metformin for cancer patients with concurrent diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 2014;16:707-710. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24460896. - 107. He XK, Su TT, Si JM, Sun LM. Metformin is associated with slightly reduced risk of colorectal cancer and moderate survival benefits in diabetes mellitus: A meta-analysis. Medicine (Baltimore) 2016;95:e2749. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26886616. - 108. Nie Z, Zhu H, Gu M. Reduced colorectal cancer incidence in type 2 diabetic patients treated with metformin: a meta-analysis. Pharm Biol 2016;54:2636-2642. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27159666. - 109. Higurashi T, Hosono K, Takahashi H, et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: a multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol 2016;17:475-483. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26947328. - 110. Mills KT, Bellows CF, Hoffman AE, et al. Diabetes mellitus and colorectal cancer prognosis: a meta-analysis. Dis Colon Rectum 2013;56:1304-1319. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24105007. - 111. Zhu B, Wu X, Wu B, et al. The relationship between diabetes and colorectal cancer prognosis: A meta-analysis based on the cohort studies. PLoS One 2017;12:e0176068. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28423026. - 112. Mei ZB, Zhang ZJ, Liu CY, et al. Survival benefits of metformin for colorectal cancer patients with diabetes: a systematic review and meta-analysis. PLoS One 2014;9:e91818. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24647047. - 113. Meng F, Song L, Wang W. Metformin improves overall survival of colorectal cancer patients with diabetes: A meta-analysis. J Diabetes Res 2017;2017:5063239. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28271076. - 114. Kowall B, Stang A, Rathmann W, Kostev K. No reduced risk of overall, colorectal, lung, breast, and prostate cancer with metformin therapy in diabetic patients: database analyses from Germany and the UK. Pharmacoepidemiol Drug Saf 2015;24:865-874. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26132313. - 115. Zanders MM, van Herk-Sukel MP, Vissers PA, et al. Are metformin, statin and aspirin use still associated with overall mortality among colorectal cancer patients with diabetes if adjusted for one another? Br J Cancer 2015;113:403-410. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26180924. - 116. Hari DM, Leung AM, Lee JH, et al. AJCC Cancer Staging Manual 7th edition criteria for colon cancer: do the complex modifications improve prognostic assessment? J Am Coll Surg 2013;217:181-190. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23768788. - 117. Chu QD, Zhou M, Medeiros K, Peddi P. Positive surgical margins contribute to the survival paradox between patients with stage IIB/C (T4N0) and stage IIIA (T1-2N1, T1N2a) colon cancer. Surgery 2016;160:1333-1343. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27425043. - 118. Kim MJ, Jeong SY, Choi SJ, et al. Survival paradox between stage IIB/C (T4N0) and stage IIIA (T1-2N1) colon cancer. Ann Surg Oncol 2015;22:505-512. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25145501. - 119. Gunderson LL, Jessup JM, Sargent DJ, et al. Revised TN categorization for colon cancer based on national survival outcomes data. J Clin Oncol 2010;28:264-271. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19949014. - 120. Franko J, Shi Q, Goldman CD, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841. J Clin Oncol 2012;30:263-267. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22162570. - 121. Compton CC. Updated protocol for the examination of specimens from patients with carcinomas of the colon and rectum, excluding carcinoid tumors, lymphomas, sarcomas, and tumors of the vermiform appendix: a basis for checklists. Cancer Committee. Arch Pathol Lab Med 2000;124:1016-1025. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10888778. - 122. Compton CC, Greene FL. The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin 2004;54:295-308. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15537574. - 123. Compton CC, Fielding LP, Burgart LJ, et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 2000;124:979-994. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10888773. - 124. Nissan A, Stojadinovic A, Shia J, et al. Predictors of recurrence in patients with T2 and early T3, N0 adenocarcinoma of the rectum treated by surgery alone. J Clin Oncol 2006;24:4078-4084. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16943525. - 125. Fujita S, Shimoda T, Yoshimura K, et al. Prospective evaluation of prognostic factors in patients with colorectal cancer undergoing curative resection. J Surg Oncol 2003;84:127-131. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14598355. - 126. Liebig C, Ayala G, Wilks J, et al. Perineural invasion is an independent predictor of outcome in colorectal cancer. J Clin Oncol 2009;27:5131-5137. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19738119. - 127. Quah HM, Chou JF, Gonen M, et al. Identification of patients with high-risk stage II colon cancer for adjuvant therapy. Dis Colon Rectum 2008;51:503-507. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18322753. - 128. Lo DS, Pollett A, Siu LL, et al. Prognostic significance of mesenteric tumor nodules in patients with stage III colorectal cancer. Cancer 2008;112:50-54. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18008365. - 129. Ueno H, Mochizuki H, Hashiguchi Y, et al. Extramural cancer deposits without nodal structure in colorectal cancer: optimal categorization for prognostic staging. Am J Clin Pathol 2007;127:287-294. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17210518. - 130. Birbeck KF, Macklin CP, Tiffin NJ, et al. Rates of circumferential resection margin involvement vary between surgeons and predict outcomes in rectal cancer surgery. Ann Surg 2002;235:449-457. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11923599. - 131. Le Voyer TE, Sigurdson ER, Hanlon AL, et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 2003;21:2912-2919. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12885809. - 132. Bilimoria KY, Palis B, Stewart AK, et al. Impact of tumor location on nodal evaluation for colon cancer. Dis Colon Rectum 2008;51:154-161. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18172729. - 133. Lykke J, Roikjaer O, Jess P. The relation between lymph node status and survival in Stage I-III colon cancer: results from a prospective nationwide cohort study. Colorectal Dis 2013;15:559-565. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23061638. - 134. Budde CN, Tsikitis VL, Deveney KE, et al. Increasing the number of lymph nodes examined after colectomy does not improve colon cancer staging. J Am Coll Surg 2014;218:1004-1011. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24661856. - 135. Parsons HM, Tuttle TM, Kuntz KM, et al. Association between lymph node evaluation for colon cancer and node positivity over the past 20 years. JAMA 2011;306:1089-1097. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21917579. - 136. Storli K, Sondenaa K, Furnes B, et al. Improved lymph node harvest from resected colon cancer specimens did not cause upstaging from TNM stage II to III. World J Surg 2011;35:2796-2803. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21879420. - 137. Wong SL, Ji H, Hollenbeck BK, et al. Hospital lymph node examination rates and survival after resection for colon cancer. JAMA 2007;298:2149-2154. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18000198. - 138. Nedrebo BS, Soreide K, Nesbakken A, et al. Risk factors associated with poor lymph node harvest after colon cancer surgery in a national cohort. Colorectal Dis 2013;15:e301-308. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23582027. 139. Sarli L, Bader G, Iusco D, et al. Number of lymph nodes examined and prognosis of TNM stage II colorectal cancer. Eur J Cancer 2005;41:272-279. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15661553. - 140. Wong SL. Lymph node evaluation in colon cancer: assessing the link between quality indicators and quality. JAMA 2011;306:1139-1141. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21917585. - 141. Belt EJ, te Velde EA, Krijgsman O, et al. High lymph node yield is related to microsatellite instability in colon cancer. Ann Surg Oncol 2012;19:1222-1230. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21989661. - 142. Berg M, Guriby M, Nordgard O, et al. Influence of microsatellite instability, KRAS and BRAF mutations on lymph node harvest in stage I-III colon cancers. Mol Med 2013;19:286-293. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23979710. - 143. Kakar S, Shi C, Berho ME, et al. Protocol for the examination of specimens from patients with primary carcinoma of the colon and rectum. College of American Pathologists 2017. Available at: http://www.cap.org/ShowProperty?nodePath=/UCMCon/Contribution%20Folders/WebContent/pdf/cp-gilower-colonrectum-17protocol-4010.pdf. - 144. Gonen M, Schrag D, Weiser MR. Nodal staging score: a tool to assess adequate staging of node-negative colon cancer. J Clin Oncol 2009;27:6166-6171. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19901106. - 145. Gill S, Haince JF, Shi Q, et al. Prognostic value of molecular detection of lymph node metastases after curative resection of stage II colon cancer: a systematic pooled data analysis. Clin Colorectal Cancer 2015;14:99-105. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25619805. 146. Ramos-Esquivel A, Juarez M, Gonzalez I, et al. Prognosis impact of the lymph node ratio in patients with colon adenocarcinoma: a single- centre experience. J Gastrointest Cancer 2014;45:133-136. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24382601. 147. Sabbagh C, Mauvais F, Cosse C, et al. A lymph node ratio of 10% is predictive of survival in stage III colon cancer: a French regional study. Int Surg 2014;99:344-353. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25058763. 148. Sugimoto K, Sakamoto K, Tomiki Y, et al. Proposal of new classification for stage III colon cancer based on the lymph node ratio: analysis of 4,172 patients from multi-institutional database in Japan. Ann Surg Oncol 2015;22:528-534. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25160735. 149. Zhang MR, Xie TH, Chi JL, et al. Prognostic role of the lymph node ratio in node positive colorectal cancer: a meta-analysis. Oncotarget 2016;7:72898-72907. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27662659. - 150. Gleisner AL, Mogal H, Dodson R, et al. Nodal status, number of lymph nodes examined, and lymph node ratio: what defines prognosis after resection of colon adenocarcinoma? J Am Coll Surg 2013;217:1090-1100. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24045143. - 151. Redston M, Compton CC, Miedema BW, et al. Analysis of micrometastatic disease in sentinel lymph nodes from resectable colon cancer: results of Cancer and Leukemia Group B Trial 80001. J Clin Oncol 2006;24:878-883. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16418493. 152. Bertagnolli M, Miedema B, Redston M, et al. Sentinel node staging of resectable colon cancer: results of a multicenter study. Ann Surg 2004;240:624-628. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15383790. 153. Saha S, Dan AG, Beutler T, et al. Sentinel lymph node mapping technique in colon cancer. Semin Oncol 2004;31:374-381. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15190495. 154. Turner RR, Nora DT, Trocha SD, Bilchik AJ. Colorectal carcinoma nodal staging. Frequency and nature of cytokeratin-positive cells in sentinel and nonsentinel lymph nodes. Arch Pathol Lab Med 2003;127:673-679. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12741889. 155. Wiese DA, Saha S, Badin J, et al. Pathologic evaluation of sentinel lymph nodes in colorectal carcinoma. Arch Pathol Lab Med 2000;124:1759-1763. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11100053. 156. Wood TF, Nora DT, Morton DL, et al. One hundred consecutive cases of sentinel lymph node mapping in early colorectal carcinoma: detection of missed micrometastases. J Gastrointest Surg 2002;6:322-329; discussion 229-330. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12022982. - 157. Noura S, Yamamoto H, Miyake Y, et al. Immunohistochemical assessment of localization and frequency of micrometastases in lymph nodes of colorectal cancer. Clin Cancer Res 2002;8:759-767. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11895906. - 158. Noura S, Yamamoto H, Ohnishi T, et al. Comparative detection of lymph node micrometastases of stage II colorectal cancer by reverse transcriptase polymerase chain reaction and immunohistochemistry. J Clin Oncol 2002;20:4232-4241. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12377967. - 159. Yasuda K, Adachi Y, Shiraishi N, et al. Pattern of lymph node micrometastasis and prognosis of patients with colorectal cancer. Ann Surg Oncol 2001;8:300-304. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11352302. - 160. Protic M, Stojadinovic A, Nissan A, et al. Prognostic effect of ultrastaging node-negative colon cancer without adjuvant chemotherapy: a prospective National Cancer Institute-sponsored clinical trial. J Am Coll Surg 2015;221:643-651; quiz 783-645. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26213360. - 161. Mescoli C, Albertoni L, Pucciarelli S, et al. Isolated tumor cells in regional lymph nodes as relapse predictors in stage I and II colorectal cancer. J Clin Oncol 2012;30:965-971. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22355061. - 162. Rahbari NN, Bork U, Motschall E, et al. Molecular detection of tumor cells in regional lymph nodes is associated with disease recurrence and poor survival in node-negative colorectal cancer: a systematic review and meta-analysis. J Clin Oncol 2012;30:60-70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22124103. - 163. Sloothaak DA, Sahami S, van der Zaag-Loonen HJ, et al. The prognostic value of micrometastases and isolated tumour cells in histologically negative lymph nodes of patients with colorectal cancer: a systematic review and meta-analysis. Eur J Surg Oncol 2014;40:263-269. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24368050. - 164. Goldstein NS, Turner JR. Pericolonic tumor deposits in patients with T3N+MO colon adenocarcinomas: markers of reduced disease free survival and intra-abdominal metastases and their implications for TNM classification. Cancer 2000;88:2228-2238. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10820343. - 165. Puppa G, Maisonneuve P, Sonzogni A, et al. Pathological assessment of pericolonic tumor deposits in advanced colonic carcinoma: relevance to prognosis and tumor staging. Mod Pathol 2007;20:843-855. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17491597. - 166. Mayo E, Llanos AA, Yi X, et al. Prognostic value of tumour deposit and perineural invasion status in colorectal cancer patients: a SEER-based population study. Histopathology 2016;69:230-238. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26802566. - 167. Ueno H, Mochizuki H. Clinical significance of extrabowel skipped cancer infiltration in rectal cancer. Surg Today 1997;27:617-622. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9306563. - 168. Al-Sukhni E, Attwood K, Gabriel EM, et al. Lymphovascular and perineural invasion are associated with poor prognostic features and outcomes in colorectal cancer: A retrospective cohort study. Int J Surg 2016;37:42-49. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27600906. 169. Knijn N, Mogk SC, Teerenstra S, et al. Perineural invasion is a strong prognostic factor in colorectal cancer: a systematic review. Am J Surg Pathol 2016;40:103-112. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26426380. 170. Yang Y, Huang X, Sun J, et al. Prognostic value of perineural invasion in colorectal cancer: a meta-analysis. J Gastrointest Surg 2015;19:1113-1122. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25663635. - 171. Yun JA, Kim HC, Kim SH, et al. Prognostic significance of perineural invasion in stage IIA colon cancer. ANZ J Surg 2014;86:1007-1013. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25113398. - 172. Lugli A, Kirsch R, Ajioka Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol 2017;30:1299-1311. Available at: https://pubmed.ncbi.nlm.nih.gov/28548122/. 173. Pai RK, Cheng YW, Jakubowski MA, et al. Colorectal carcinomas with submucosal invasion (pT1): analysis of histopathological and molecular factors predicting lymph node metastasis. Mod Pathol 2017;30:113-122. Available at: https://pubmed.ncbi.nlm.nih.gov/27713420/. - 174. Koelzer VH, Zlobec I, Lugli A. Tumor budding in colorectal cancer-ready for diagnostic practice? Hum Pathol 2016;47:4-19. Available at: https://pubmed.ncbi.nlm.nih.gov/26476568/. - 175. Bosch SL, Teerenstra S, de Wilt JH, et al. Predicting lymph node metastasis in pT1 colorectal cancer: a systematic review of risk factors providing rationale for therapy decisions. Endoscopy 2013;45:827-834. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23884793. - 176. Backes Y, Elias SG, Groen JN, et al. Histologic Factors Associated With Need for Surgery in Patients With Pedunculated T1 Colorectal Carcinomas. Gastroenterology 2018;154:1647-1659. Available at: https://pubmed.ncbi.nlm.nih.gov/29366842/. - 177. Brown IS, Bettington ML, Bettington A, et al. Adverse histological features in malignant colorectal polyps: a contemporary series of 239 cases. J Clin Pathol 2016;69:292-299. Available at: https://pubmed.ncbi.nlm.nih.gov/26424814/. - 178. Lee VWK, Chan KF. Tumor budding and poorly-differentiated cluster in prognostication in Stage II colon cancer. Pathol Res Pract 2018;214:402-407. Available at: https://pubmed.ncbi.nlm.nih.gov/29487008/. - 179. Romiti A, Roberto M, Marchetti P, et al. Study of histopathologic parameters to define the prognosis of stage II colon cancer. Int J Colorectal Dis 2019;34:905-913. Available at: https://pubmed.ncbi.nlm.nih.gov/30915540/. - 180. Basile D, Broudin C, Emile JF, et al. Tumor budding is an independent prognostic factor in stage III colon cancer patients: a post-hoc analysis of the IDEA-France phase III trial (PRODIGE-GERCOR). Ann Oncol 2022;33:628-637. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35306156. 181. Van de Moortele M, De Hertogh G, Sagaert X, Van Cutsem E. Appendiceal cancer: a review of the literature. Acta Gastroenterol Belg 2020;83:441-448. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33094592. - 182. Hoehn RS, Rieser CJ, Choudry MH, et al. Current management of appendiceal neoplasms. Am Soc Clin Oncol Educ Book 2021;41:1-15. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33770459. - 183. Kelly KJ. Management of appendix cancer. Clin Colon Rectal Surg 2015;28:247-255. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26648795. 184. McCusker ME, Cote TR, Clegg LX, Sobin LH. Primary malignant neoplasms of the appendix: a population-based study from the surveillance, epidemiology and end-results program, 1973-1998. Cancer 2002;94:3307-3312. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12115365. 185. Alakus H, Babicky ML, Ghosh P, et al. Genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med 2014;6:43. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24944587. - 186. Umetsu SE, Kakar S. Staging of appendiceal mucinous neoplasms: challenges and recent updates. Hum Pathol 2023;132:65-76. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35843338. - 187. Valasek MA, Pai RK. An update on the diagnosis, grading, and staging of appendiceal mucinous neoplasms. Adv Anat Pathol 2018;25:38-60. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29016471. - 188. Yanai Y, Saito T, Hayashi T, et al. Molecular and clinicopathological features of appendiceal mucinous neoplasms. Virchows Arch 2021;478:413-426. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32821969. - 189. Tsai JH, Yang CY, Yuan RH, Jeng YM. Correlation of molecular and morphological features of appendiceal epithelial neoplasms. Histopathology 2019;75:468-477. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31111538. - 190. Liao X, Vavinskaya V, Sun K, et al. Mutation profile of high-grade appendiceal mucinous neoplasm. Histopathology 2020;76:461-469. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31491041. - 191. Gonzalez RS, Carr NJ, Liao H, et al. High-grade appendiceal mucinous neoplasm: clinicopathologic findings in 35 cases. Arch Pathol Lab Med 2022;146:1471-1478. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35472721. - 192. Sung CO, Seo JW, Kim KM, et al. Clinical significance of signet-ring cells in colorectal mucinous adenocarcinoma. Mod Pathol 2008;21:1533-1541. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18849918. - 193. Davison JM, Choudry HA, Pingpank JF, et al. Clinicopathologic and molecular analysis of disseminated appendiceal mucinous neoplasms: identification of factors predicting survival and proposed criteria for a three-tiered assessment of tumor grade. Mod Pathol 2014;27:1521-1539. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24633196. - 194. Asare EA, Compton CC, Hanna NN, et al. The impact of stage, grade, and mucinous histology on the efficacy of systemic chemotherapy in adenocarcinomas of the appendix: Analysis of the National Cancer Data Base. Cancer 2016;122:213-221. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26506400. - 195. Shetty S, Natarajan B, Thomas P, et al. Proposed classification of pseudomyxoma peritonei: influence of signet ring cells on survival. Am Surg 2013;79:1171-1176. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24165252. - 196. Foote MB, Walch H, Chatila W, et al. Molecular classification of appendiceal adenocarcinoma. J Clin Oncol 2023;41:1553-1564. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36493333. - 197. Turaga KK, Pappas SG, Gamblin T. Importance of histologic subtype in the staging of appendiceal tumors. Ann Surg Oncol 2012;19:1379-1385. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22302267. - 198. McGory ML, Maggard MA, Kang H, et al. Malignancies of the appendix: beyond case series reports. Dis Colon Rectum 2005;48:2264-2271. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16258711. - 199. Sigley K, Franklin M, Welch S. Appendiceal goblet cell adenocarcinoma case report and review of the literature. Cureus 2021;13:e13511. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33786220. - 200. Brathwaite S, Yearsley MM, Bekaii-Saab T, et al. Appendiceal mixed adeno-neuroendocrine carcinoma: A population-based study of the surveillance, epidemiology, and end results registry. Front Oncol 2016;6:148. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27379210. - 201. Volante M, Grillo F, Massa F, et al. Neuroendocrine neoplasms of the appendix, colon and rectum. Pathologica 2021;113:19-27. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33686307. - 202. Leonards LM, Pahwa A, Patel MK, et al. Neoplasms of the appendix: pictorial review with clinical and pathologic correlation. Radiographics 2017;37:1059-1083. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28598731. - 203. Gundogar O, Kimiloglu E, Komut N, et al. Evaluation of appendiceal mucinous neoplasms with a new classification system and literature review. Turk J Gastroenterol 2018;29:533-542. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30260774. - 204. Connor SJ, Hanna GB, Frizelle FA. Appendiceal tumors: retrospective clinicopathologic analysis of appendiceal tumors from 7,970 appendectomies. Dis Colon Rectum 1998;41:75-80. Available at: https://www.ncbi.nlm.nih.gov/pubmed/9510314. - 205. Hajiran A, Baker K, Jain P, Hashmi M. Case of an appendiceal mucinous adenocarcinoma presenting as a left adnexal mass. Int J Surg Case Rep 2014;5:172-174. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24568943. - 206. Hatch QM, Gilbert EW. Appendiceal neoplasms. Clin Colon Rectal Surg 2018;31:278-287. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30186049. - 207. Patel SH, Bihlmeyer S, Eggenberger JC, et al. Locally advanced perforated appendiceal cancer: case report and review. Clin Case Rep 2022;10:e05349. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35169467. - 208. Persaud T, Swan N, Torreggiani WC. Giant mucinous cystadenoma of the appendix. Radiographics 2007;27:553-557. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17374868. - 209. Carr NJ, McCarthy WF, Sobin LH. Epithelial noncarcinoid tumors and tumor-like lesions of the appendix. a clinicopathologic study of 184 patients with a multivariate analysis of prognostic factors. Cancer 1995;75:757-768. Available at: https://www.ncbi.nlm.nih.gov/pubmed/7828125. - 210. Fackche N, Schmocker RK, Kubi B, et al. The utility of preoperative tumor markers in peritoneal carcinomatosis from primary appendiceal adenocarcinoma: An analysis from the us HIPEC collaborative. J Gastrointest Surg 2021;25:2908-2919. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33634422. - 211. Lansom J, Alzahrani N, Liauw W, Morris DL. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei and appendix tumours. Indian J Surg Oncol 2016;7:166-176. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27065707. - 212. Zakka K, Williamson S, Jiang R, et al. Is adjuvant chemotherapy beneficial for stage II-III goblet cell carcinoid/goblet cell adenocarcinoma of the appendix? Surg Oncol 2021;36:120-129. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33360118. - 213. Benedix F, Reimer A, Gastinger I, et al. Primary appendiceal carcinoma--epidemiology, surgery and survival: results of a German multicenter study. Eur J Surg Oncol 2010;36:763-771. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20561765. - 214. Sugarbaker PH, Ronnett BM, Archer A, et al. Pseudomyxoma peritonei syndrome. Adv Surg 1996;30:233-280. Available at: https://www.ncbi.nlm.nih.gov/pubmed/8960339. - 215. Yu B, Raj MS. Pseudomyxoma peritonei. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022. 216. Kolla BC, Petersen A, Chengappa M, et al. Impact of adjuvant chemotherapy on outcomes in appendiceal cancer. Cancer Med 2020;9:3400-3406. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32189461. - 217. Lu P, Fields AC, Meyerhardt JA, et al. Systemic chemotherapy and survival in patients with metastatic low-grade appendiceal mucinous adenocarcinoma. J Surg Oncol 2019;120:446-451. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31236958. - 218. Carr NJ, Cecil TD, Mohamed F, et al. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia: The results of the peritoneal surface oncology group international (PSOGI) modified delphi process. Am J Surg Pathol 2016;40:14-26. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26492181. - 219. Govaerts K, Lurvink RJ, De Hingh I, et al. Appendiceal tumours and pseudomyxoma peritonei: Literature review with PSOGI/EURACAN clinical practice guidelines for diagnosis and treatment. Eur J Surg Oncol 2021;47:11-35. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32199769. - 220. Santullo F, Pacelli F, Abatini C, et al. Cytoreduction and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei of appendiceal origin: a single center experience. Front Surg 2021;8:715119. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34513915. - 221. Harmon RL, Sugarbaker PH. Prognostic indicators in peritoneal carcinomatosis from gastrointestinal cancer. Int Semin Surg Oncol 2005;2:3. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15701175. - 222. Mehta SS, Bhatt A, Glehen O. Cytoreductive surgery and peritonectomy procedures. Indian J Surg Oncol 2016;7:139-151. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27065704. - 223. Chua TC, Moran BJ, Sugarbaker PH, et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic - intraperitoneal chemotherapy. J Clin Oncol 2012;30:2449-2456. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22614976. - 224. Cooper HS, Deppisch LM, Gourley WK, et al. Endoscopically removed malignant colorectal polyps: clinicopathologic correlations. Gastroenterology 1995;108:1657-1665. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7768369. - 225. Markowitz AJ, Winawer SJ. Management of colorectal polyps. CA Cancer J Clin 1997;47:93-9112. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9074488. - 226. Yoshii S, Nojima M, Nosho K, et al. Factors associated with risk for colorectal cancer recurrence after endoscopic resection of T1 tumors. Clin Gastroenterol Hepatol 2014;12:292-302 e293. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23962552. - 227. Cooper HS. Surgical pathology of endoscopically removed malignant polyps of the colon and rectum. Am J Surg Pathol 1983;7:613-623. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6638257. - 228. Cooper HS. Pathologic issues in the treatment of endoscopically removed malignant colorectal polyps. J Natl Compr Canc Netw 2007;5:991-996. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17977505. 229. Hassan C, Zullo A, Risio M, et al. Histologic risk factors and clinical outcome in colorectal malignant polyp: a pooled-data analysis. Dis Colon Rectum 2005;48:1588-1596. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15937622. 230. Belderbos TD, Leenders M, Moons LM, Siersema PD. Local recurrence after endoscopic mucosal resection of nonpedunculated colorectal lesions: systematic review and meta-analysis. Endoscopy 2014;46:388-402. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24671869. 231. Cranley JP, Petras RE, Carey WD, et al. When is endoscopic polypectomy adequate therapy for colonic polyps containing invasive carcinoma? Gastroenterology 1986;91:419-427. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3721127. - 232. Haggitt RC, Glotzbach RE, Soffer EE, Wruble LD. Prognostic factors in colorectal carcinomas arising in adenomas: implications for lesions removed by endoscopic polypectomy. Gastroenterology 1985;89:328-336. Available at: http://www.ncbi.nlm.nih.gov/pubmed/4007423. - 233. Ota DM, Nelson H, Weeks JC. Controversies regarding laparoscopic colectomy for malignant diseases. Curr Opin Gen Surg 1994:208-213. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7583971. - 234. Mou S, Soetikno R, Shimoda T, et al. Pathologic predictive factors for lymph node metastasis in submucosal invasive (T1) colorectal cancer: a systematic review and meta-analysis. Surg Endosc 2013;27:2692-2703. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23392988. - 235. Seitz U, Bohnacker S, Seewald S, et al. Is endoscopic polypectomy an adequate therapy for malignant colorectal adenomas? Presentation of 114 patients and review of the literature. Dis Colon Rectum 2004;47:1789-1796. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15622570. - 236. Ueno H, Mochizuki H, Hashiguchi Y, et al. Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology 2004;127:385-394. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15300569. - 237. Volk EE, Goldblum JR, Petras RE, et al. Management and outcome of patients with invasive carcinoma arising in colorectal polyps. Gastroenterology 1995;109:1801-1807. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7498644. - 238. Choi JY, Jung SA, Shim KN, et al. Meta-analysis of predictive clinicopathologic factors for lymph node metastasis in patients with early colorectal carcinoma. J Korean Med Sci 2015;30:398-406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25829807. - 239. Choi DH, Sohn DK, Chang HJ, et al. Indications for subsequent surgery after endoscopic resection of submucosally invasive colorectal carcinomas: a prospective cohort study. Dis Colon Rectum 2009;52:438-445. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19333043. 240. Park KJ, Choi HJ, Roh MS, et al. Intensity of tumor budding and its prognostic implications in invasive colon carcinoma. Dis Colon Rectum 2005;48:1597-1602. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15937624. - 241. Rogers AC, Winter DC, Heeney A, et al. Systematic review and meta-analysis of the impact of tumour budding in colorectal cancer. Br J Cancer 2016;115:831-840. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/27599041. - 242. Balthazar EJ, Megibow AJ, Hulnick D, Naidich DP. Carcinoma of the colon: detection and preoperative staging by CT. AJR Am J Roentgenol 1988;150:301-306. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3257314. 243. Choi DJ, Kwak JM, Kim J, et al. Preoperative chest computerized tomography in patients with locally advanced mid or lower rectal cancer: its role in staging and impact on treatment strategy. J Surg Oncol 2010;102:588-592. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20607759. - 244. Grossmann I, Avenarius JK, Mastboom WJ, Klaase JM. Preoperative staging with chest CT in patients with colorectal carcinoma: not as a routine procedure. Ann Surg Oncol 2010;17:2045-2050. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20151212. - 245. Qiu M, Hu J, Yang D, et al. Pattern of distant metastases in colorectal cancer: a SEER based study. Oncotarget 2015;6:38658-38666. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26484417. - 246. Onaitis MW, Petersen RP, Haney JC, et al. Prognostic factors for recurrence after pulmonary resection of colorectal cancer metastases. Ann Thorac Surg 2009;87:1684-1688. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19463577. - 247. Huang X, Lv B, Zhang S, Meng L. Preoperative colonic stents versus emergency surgery for acute left-sided malignant colonic obstruction: a meta-analysis. J Gastrointest Surg 2014;18:584-591. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24170606. - 248. Matsuda A, Miyashita M, Matsumoto S, et al. Comparison of long-term outcomes of colonic stent as "bridge to surgery" and emergency surgery for malignant large-bowel obstruction: a meta-analysis. Ann Surg Oncol 2015;22:497-504. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25120255. 249. Arezzo A, Balague C, Targarona E, et al. Colonic stenting as a bridge to surgery versus emergency surgery for malignant colonic obstruction: results of a multicentre randomised controlled trial (ESCO trial). Surg Endosc 2017;31:3297-3305. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27924392. - 250. Arezzo A, Forcignano E, Bonino MA, et al. Long-term Oncologic Results After Stenting as a Bridge to Surgery Versus Emergency Surgery for Malignant Left-sided Colonic Obstruction: A Multicenter Randomized Controlled Trial (ESCO Trial). Ann Surg 2020;272:703-708. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32833762. - 251. Amelung FJ, Mulder CL, Verheijen PM, et al. Acute resection versus bridge to surgery with diverting colostomy for patients with acute malignant left sided colonic obstruction: Systematic review and meta-analysis. Surg Oncol 2015;24:313-321. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26690820. - 252. Chaudhri S, Brown L, Hassan I, Horgan AF. Preoperative intensive, community-based vs. traditional stoma education: a randomized, controlled trial. Dis Colon Rectum 2005;48:504-509. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15768181. - 253. Baykara ZG, Demir SG, Karadag A, et al. A multicenter, retrospective study to evaluate the effect of preoperative stoma site marking on stomal and peristomal complications. Ostomy Wound Manage 2014;60:16-26. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24807019. 254. Bass EM, Del Pino A, Tan A, et al. Does preoperative stoma marking and education by the enterostomal therapist affect outcome? Dis Colon Rectum 1997;40:440-442. Available at: https://www.ncbi.nlm.nih.gov/pubmed/9106693. - 255. Foxtrot Collaborative Group. Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: the pilot phase of a randomised controlled trial. Lancet Oncol 2012;13:1152-1160. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23017669. - 256. Morton D, Seymour M, Magill L, et al. Preoperative Chemotherapy for Operable Colon Cancer: Mature Results of an International Randomized Controlled Trial. J Clin Oncol 2023;41:1541-1552. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36657089. - 257. Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med 2020;26:566-576. Available at: - 258. Chalabi M, Verschoor YL, van den Berg J, et al. Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: The NICHE-2 study [abstract]. Annals of Oncology 2022;33:S1389. Available at: https://doi.org/10.1016/j.annonc.2022.08.016. - 259. Cohen AM. Surgical considerations in patients with cancer of the colon and rectum. Semin Oncol 1991;18:381-387. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1713712. - 260. West NP, Hohenberger W, Weber K, et al. Complete mesocolic excision with central vascular ligation produces an oncologically superior specimen compared with standard surgery for carcinoma of the colon. J Clin Oncol 2010;28:272-278. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19949013. - 261. Berger AC, Sigurdson ER, LeVoyer T, et al. Colon cancer survival is associated with decreasing ratio of metastatic to examined lymph nodes. J Clin Oncol 2005;23:8706-8712. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16314630. 262. Madoff RD. Defining quality in colon cancer surgery. J Clin Oncol 2012;30:1738-1740. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22473171. - 263. West NP, Morris EJ, Rotimi O, et al. Pathology grading of colon cancer surgical resection and its association with survival: a retrospective observational study. Lancet Oncol 2008;9:857-865. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18667357. - 264. West NP, Kobayashi H, Takahashi K, et al. Understanding optimal colonic cancer surgery: comparison of Japanese D3 resection and European complete mesocolic excision with central vascular ligation. J Clin Oncol 2012;30:1763-1769. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22473170. - 265. Bertelsen CA, Neuenschwander AU, Jansen JE, et al. Disease-free survival after complete mesocolic excision compared with conventional colon cancer surgery: a retrospective, population-based study. Lancet Oncol 2015;16:161-168. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25555421. 266. Kontovounisios C, Kinross J, Tan E, et al. Complete mesocolic excision in colorectal cancer: a systematic review. Colorectal Dis 2015;17:7-16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25283236. - 267. Lee JK, Delaney CP, Lipman JM. Current state of the art in laparoscopic colorectal surgery for cancer: Update on the multi-centric international trials. Ann Surg Innov Res 2012;6:5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22846394. - 268. Morneau M, Boulanger J, Charlebois P, et al. Laparoscopic versus open surgery for the treatment of colorectal cancer: a literature review and recommendations from the Comite de l'evolution des pratiques en oncologie. Can J Surg 2013;56:297-310. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24067514. - 269. Theophilus M, Platell C, Spilsbury K. Long-term survival following laparoscopic and open colectomy for colon cancer: a meta-analysis of - randomized controlled trials. Colorectal Dis 2014;16:O75-81. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24206016. - 270. Wang CL, Qu G, Xu HW. The short- and long-term outcomes of laparoscopic versus open surgery for colorectal cancer: a meta-analysis. Int J Colorectal Dis 2014;29:309-320. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24445673. - 271. Lacy AM, Garcia-Valdecasas JC, Delgado S, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet 2002;359:2224-2229. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12103285. - 272. Buunen M, Veldkamp R, Hop WCJ, et al. Survival after laparoscopic surgery versus open surgery for colon cancer: long-term outcome of a randomised clinical trial. Lancet Oncol 2009;10:44-52. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19071061. - 273. Deijen CL, Vasmel JE, de Lange-de Klerk ESM, et al. Ten-year outcomes of a randomised trial of laparoscopic versus open surgery for colon cancer. Surg Endosc 2017;31:2607-2615. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27734203. - 274. Jayne DG, Guillou PJ, Thorpe H, et al. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. J Clin Oncol 2007;25:3061-3068. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17634484. - 275. Green BL, Marshall HC, Collinson F, et al. Long-term follow-up of the Medical Research Council CLASICC trial of conventional versus laparoscopically assisted resection in colorectal cancer. Br J Surg 2013;100:75-82. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23132548. 276. Laparoscopically assisted colectomy is as safe and effective as open colectomy in people with colon cancer Abstracted from: Nelson H, Sargent D, Wieand HS, et al; for the Clinical Outcomes of Surgical Therapy Study Group. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med 2004; 350: 2050-2059. Cancer Treat Rev 2004;30:707-709. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15541580. 277. Fleshman J, Sargent DJ, Green E, et al. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann Surg 2007;246:655-662. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17893502. 278. Bagshaw PF, Allardyce RA, Frampton CM, et al. Long-term outcomes of the australasian randomized clinical trial comparing laparoscopic and conventional open surgical treatments for colon cancer: the Australasian Laparoscopic Colon Cancer Study trial. Ann Surg 2012;256:915-919. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23154392. 279. Bonjer HJ, Hop WCJ, Nelson H, et al. Laparoscopically assisted vs open colectomy for colon cancer: a meta-analysis. Arch Surg 2007;142:298-303. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17372057. 280. Di B, Li Y, Wei K, et al. Laparoscopic versus open surgery for colon cancer: a meta-analysis of 5-year follow-up outcomes. Surg Oncol 2013;22:e39-43. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23643698. 281. Jackson TD, Kaplan GG, Arena G, et al. Laparoscopic versus open resection for colorectal cancer: a metaanalysis of oncologic outcomes. J Am Coll Surg 2007;204:439-446. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17324779. 282. Kuhry E, Schwenk W, Gaupset R, et al. Long-term outcome of laparoscopic surgery for colorectal cancer: a cochrane systematic review of randomised controlled trials. Cancer Treat Rev 2008;34:498-504. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18468803. 283. Ohtani H, Tamamori Y, Arimoto Y, et al. A meta-analysis of the shortand long-term results of randomized controlled trials that compared laparoscopy-assisted and open colectomy for colon cancer. J Cancer 2012;3:49-57. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22315650. 284. Rondelli F, Trastulli S, Avenia N, et al. Is laparoscopic right colectomy more effective than open resection? A meta-analysis of randomized and nonrandomized studies. Colorectal Dis 2012;14:e447-469. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22540533. 285. Kienle P, Weitz J, Koch M, Buchler MW. Laparoscopic surgery for colorectal cancer. Colorectal Dis 2006;8 Suppl 3:33-36. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16813591. 286. Wagman LD. Laparoscopic and open surgery for colorectal cancer: reaching equipoise? J Clin Oncol 2007;25:2996-2998. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17634477. 287. Kuhry E, Bonjer HJ, Haglind E,
et al. Impact of hospital case volume on short-term outcome after laparoscopic operation for colonic cancer. Surg Endosc 2005;19:687-692. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15798899. 288. Schiphorst AH, Verweij NM, Pronk A, et al. Non-surgical complications after laparoscopic and open surgery for colorectal cancer - A systematic review of randomised controlled trials. Eur J Surg Oncol 2015;41:1118-1127. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25980746. 289. Zheng Z, Jemal A, Lin CC, et al. Comparative effectiveness of laparoscopy vs open colectomy among nonmetastatic colon cancer patients: an analysis using the National Cancer Data Base. J Natl Cancer Inst 2015;107. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25663688. 290. Huscher CG, Bretagnol F, Corcione F. Laparoscopic colorectal cancer resection in high-volume surgical centers: long-term outcomes from the LAPCOLON group trial. World J Surg 2015;39:2045-2051. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25820910. - 291. Nelson G, Kiyang LN, Crumley ET, et al. Implementation of enhanced recovery after surgery (ERAS) across a provincial healthcare system: the ERAS Alberta colorectal surgery experience. World J Surg 2016;40:1092-1103. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26928854. - 292. Varadhan KK, Lobo DN, Ljungqvist O. Enhanced recovery after surgery: the future of improving surgical care. Crit Care Clin 2010;26:527-547, x. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20643305. - 293. Kennedy RH, Francis EA, Wharton R, et al. Multicenter randomized controlled trial of conventional versus laparoscopic surgery for colorectal cancer within an enhanced recovery programme: EnROL. J Clin Oncol 2014;32:1804-1811. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24799480. - 294. Chang YS, Wang JX, Chang DW. A meta-analysis of robotic versus laparoscopic colectomy. J Surg Res 2015;195:465-474. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25770742. - 295. Lim S, Kim JH, Baek SJ, et al. Comparison of perioperative and short-term outcomes between robotic and conventional laparoscopic surgery for colonic cancer: a systematic review and meta-analysis. Ann Surg Treat Res 2016;90:328-339. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27274509. - 296. Trastulli S, Cirocchi R, Desiderio J, et al. Robotic versus laparoscopic approach in colonic resections for cancer and benign diseases: systematic review and meta-analysis. PLoS One 2015;10:e0134062. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26214845. - 297. Zarak A, Castillo A, Kichler K, et al. Robotic versus laparoscopic surgery for colonic disease: a meta-analysis of postoperative variables. Surg Endosc 2015;29:1341-1347. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25847139. - 298. Nelson H, Weeks JC, Wieand HS. Proposed phase III trial comparing laparoscopic-assisted colectomy versus open colectomy for colon cancer. J Natl Cancer Inst Monogr 1995:51-56. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7577206. - 299. Wishner JD, Baker JW, Hoffman GC, et al. Laparoscopic-assisted colectomy. The learning curve. Surg Endosc 1995;9:1179-1183. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8553229. - 300. Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004;350:2343-2351. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15175436. - 301. Andre T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 2009;27:3109-3116. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19451431. - 302. Andre T, de Gramont A, Vernerey D, et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 2015;33:4176-4187. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26527776. - 303. Baxter NN, Kennedy EB, Bergsland E, et al. Adjuvant Therapy for Stage II Colon Cancer: ASCO Guideline Update. J Clin Oncol 2022;40:892-910. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34936379. - 304. Haller DG, Tabernero J, Maroun J, et al. Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J Clin Oncol 2011;29:1465-1471. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21383294. - 305. Schmoll HJ, Cartwright T, Tabernero J, et al. Phase III trial of capecitabine plus oxaliplatin as adjuvant therapy for stage III colon cancer: a planned safety analysis in 1,864 patients. J Clin Oncol 2007;25:102-109. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17194911. - 306. Grothey A, Sobrero AF, Shields AF, et al. Duration of Adjuvant Chemotherapy for Stage III Colon Cancer. N Engl J Med 2018;378:1177-1188. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29590544. - 307. Twelves C, Wong A, Nowacki MP, et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 2005;352:2696-2704. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15987918. - 308. Efficacy of adjuvant fluorouracil and folinic acid in colon cancer. International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) investigators. Lancet 1995;345:939-944. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7715291. - 309. Andre T, Louvet C, Maindrault-Goebel F, et al. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR. Eur J Cancer 1999;35:1343-1347. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10658525. - 310. Haller DG, Catalano PJ, Macdonald JS, et al. Phase III study of fluorouracil, leucovorin, and levamisole in high-risk stage II and III colon cancer: final report of Intergroup 0089. J Clin Oncol 2005;23:8671-8678. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16314627. - 311. Wolmark N, Rockette H, Mamounas E, et al. Clinical trial to assess the relative efficacy of fluorouracil and leucovorin, fluorouracil and levamisole, and fluorouracil, leucovorin, and levamisole in patients with Dukes' B and C carcinoma of the colon: results from National Surgical Adjuvant Breast and Bowel Project C-04. J Clin Oncol 1999;17:3553-3559. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10550154. - 312. Boland GM, Chang GJ, Haynes AB, et al. Association between adherence to National Comprehensive Cancer Network treatment guidelines and improved survival in patients with colon cancer. Cancer 2013;119:1593-1601. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23280510. - 313. Booth CM, Nanji S, Wei X, et al. Use and effectiveness of adjuvant chemotherapy for stage III colon cancer: a population-based study. J Natl Compr Canc Netw 2016;14:47-56. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26733554. - 314. Hines RB, Barrett A, Twumasi-Ankrah P, et al. Predictors of guideline treatment nonadherence and the impact on survival in patients with colorectal cancer. J Natl Compr Canc Netw 2015;13:51-60. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25583769. - 315. Sargent DJ, Wieand HS, Haller DG, et al. Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 2005;23:8664-8670. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16260700. - 316. Sargent D, Sobrero A, Grothey A, et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 2009;27:872-877. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19124803. - 317. de Gramont A, Hubbard J, Shi Q, et al. Association between disease-free survival and overall survival when survival is prolonged after recurrence in patients receiving cytotoxic adjuvant therapy for colon cancer: simulations based on the 20,800 patient ACCENT data set. J Clin Oncol 2010;28:460-465. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20008641. - 318. Sargent D, Shi Q, Yothers G, et al. Two or three year disease-free survival (DFS) as a primary end-point in stage III adjuvant colon cancer trials with fluoropyrimidines with or without oxaliplatin or irinotecan: Data from 12,676 patients from MOSAIC, X-ACT, PETACC-3, C-06, C-07 and C89803. Eur J Cancer 2011;47:990-996. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21257306. - 319. Bockelman C, Engelmann BE, Kaprio T, et al. Risk of recurrence in patients with colon cancer stage II and III: a systematic review and meta-analysis of recent literature. Acta Oncol 2015;54:5-16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25430983. - 320. Gray R, Barnwell J, McConkey C, et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 2007;370:2020-2029. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18083404. - 321. Hutchins G, Southward K, Handley K, et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 2011;29:1261-1270. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21383284. - 322. Tournigand C, Andre T, Bonnetain F, et al. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the Multicenter International Study of Oxaliplatin, Fluorouracil, and Leucovorin in the Adjuvant Treatment of Colon Cancer trial. J Clin Oncol 2012;30:3353-3360. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22915656. - 323. Yothers G, O'Connell MJ, Allegra CJ, et al. Oxaliplatin as adjuvant therapy for colon cancer: updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol 2011;29:3768-3774. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21859995. - 324. Casadaban L, Rauscher G, Aklilu M, et al. Adjuvant chemotherapy is associated with improved survival in patients with stage II colon cancer. Cancer 2016;122:3277-3287. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27417445. - 325. Schrag D, Rifas-Shiman S, Saltz L, et al. Adjuvant chemotherapy use for Medicare beneficiaries with stage II colon cancer. J Clin Oncol 2002;20:3999-4005. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12351597. - 326. Verhoeff SR, van Erning FN, Lemmens VE, et al. Adjuvant chemotherapy is not associated with improved survival for all high-risk factors in stage II colon cancer. Int J Cancer 2016;139:187-193. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26914273. - 327. Pahlman LA, Hohenberger WM, Matzel K, et al. Should the benefit of adjuvant chemotherapy in colon cancer be re-evaluated? J Clin Oncol 2016;34:1297-1299. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26903571. - 328. Sargent DJ, Andre T, Grothey A. Further evaluating the benefit of adjuvant chemotherapy for colon cancer. J Clin Oncol 2016;34:3711-3712. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27528725. - 329. Benson AB, 3rd, Hamilton SR. Path toward prognostication and prediction: an evolving matrix. J Clin Oncol 2011;29:4599-4601. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22067398. - 330. Dalerba P, Sahoo D, Paik S, et al. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N Engl J Med 2016;374:211-222. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26789870. - 331. Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016;8:346ra392. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27384348. - 332. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 2009;361:2449-2460. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20018966. - 333. Kim GP, Colangelo LH, Wieand HS, et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 2007;25:767-772. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17228023. - 334. Halvarsson B, Anderson H, Domanska K, et al. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers. Am J Clin Pathol 2008;129:238-244. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18208804. - 335. Cunningham JM, Christensen ER, Tester DJ, et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 1998;58:3455-3460. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9699680. - 336. Roth AD, Tejpar S, Delorenzi M, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 2010:28:466-474. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20008640. 337. Koopman M, Kortman GAM, Mekenkamp L, et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 2009;100:266-273. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19165197. 338. Klingbiel D, Saridaki Z, Roth AD, et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann Oncol 2015;26:126-132. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25361982. - 339. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003;349:247-257. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12867608. - 340. Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010;28:3219-3226. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20498393. - 341. Sinicrope FA, Mahoney MR, Smyrk TC, et al. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J Clin Oncol 2013;31:3664-3672. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24019539. - 342. Kim JE, Hong YS, Kim HJ, et al. Defective mismatch repair status was not associated with DFS and OS in stage II colon cancer treated with adjuvant chemotherapy. Ann Surg Oncol 2015;22 Suppl 3:S630-637. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26271397. - 343. Bertagnolli MM, Redston M, Compton CC, et al. Microsatellite instability and loss of heterozygosity at chromosomal location 18q: prospective evaluation of biomarkers for stages II and III colon cancer--a study of CALGB 9581 and 89803. J Clin Oncol 2011;29:3153-3162. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21747089. - 344. O'Connell MJ, Lavery I, Yothers G, et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol 2010;28:3937-3944. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20679606. - 345. Gray RG, Quirke P, Handley K, et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol 2011;29:4611-4619. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22067390. - 346. Yothers G, O'Connell MJ, Lee M, et al. Validation of the 12-gene colon cancer recurrence score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus oxaliplatin. J Clin Oncol 2013;31:4512-4519. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24220557. - 347. Venook AP, Niedzwiecki D, Lopatin M, et al. Biologic determinants of tumor recurrence in stage II colon cancer: validation study of the 12-gene recurrence score in cancer and leukemia group B (CALGB) 9581. J Clin Oncol 2013;31:1775-1781. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23530100. - 348. Yamanaka T, Oki E, Yamazaki K, et al. 12-gene recurrence score assay stratifies the recurrence risk in stage II/III colon cancer with surgery alone: the SUNRISE study. J Clin Oncol 2016;34:2906-2913. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27325854. - 349. Salazar R, Roepman P, Capella G, et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol 2011;29:17-24. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21098318. - 350. Kopetz S, Tabernero J, Rosenberg R, et al. Genomic classifier ColoPrint predicts recurrence in stage II colorectal cancer patients more accurately than clinical factors. Oncologist 2015;20:127-133. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25561511. - 351. Kennedy RD, Bylesjo M, Kerr P, et al. Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue. J Clin Oncol 2011;29:4620-4626. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22067406. - 352. Niedzwiecki D, Frankel WL, Venook AP, et al. Association between results of a gene expression signature
assay and recurrence-free interval in patients with stage II colon cancer in Cancer and Leukemia Group B 9581 (Alliance). J Clin Oncol 2016;34:3047-3053. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27432924. - 353. Mlecnik B, Bifulco C, Bindea G, et al. Multicenter International Society for Immunotherapy of Cancer Study of the Consensus Immunoscore for the Prediction of Survival and Response to Chemotherapy in Stage III Colon Cancer. J Clin Oncol 2020:JCO1903205. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32897827. - 354. Reinert T, Henriksen TV, Christensen E, et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer. JAMA Oncol 2019;5:1124-1131. Available at: https://pubmed.ncbi.nlm.nih.gov/31070691/. - 355. Tarazona N, Gimeno-Valiente F, Gambardella V, et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol 2019;30:1804-1812. Available at: https://pubmed.ncbi.nlm.nih.gov/31562764/. - 356. Tie J, Cohen JD, Wang Y, et al. Circulating Tumor DNA Analyses as Markers of Recurrence Risk and Benefit of Adjuvant Therapy for Stage III Colon Cancer. JAMA Oncol 2019;5:1710-1717. Available at: https://pubmed.ncbi.nlm.nih.gov/31621801/. - 357. Henriksen TV, Tarazona N, Frydendahl A, et al. Circulating Tumor DNA in Stage III Colorectal Cancer, beyond Minimal Residual Disease Detection, toward Assessment of Adjuvant Therapy Efficacy and Clinical Behavior of Recurrences. Clin Cancer Res 2022;28:507-517. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34625408. 358. Tie J, Cohen JD, Lahouel K, et al. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer. N Engl J Med 2022;386:2261-2272. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35657320. 359. Kotani D, Oki E, Nakamura Y, et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat Med 2023;29:127-134. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36646802. - 360. Argiles G, Tabernero J, Labianca R, et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020;31:1291-1305. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32702383. - 361. Sanoff HK, Carpenter WR, Sturmer T, et al. Effect of adjuvant chemotherapy on survival of patients with stage III colon cancer diagnosed after age 75 years. J Clin Oncol 2012;30:2624-2634. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22665536. - 362. Dotan E, Browner I, Hurria A, Denlinger C. Challenges in the management of older patients with colon cancer. J Natl Compr Canc Netw 2012;10:213-224; quiz 225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22308516. - 363. McCleary NJ, Dotan E, Browner I. Refining the chemotherapy approach for older patients with colon cancer. J Clin Oncol 2014;32:2570-2580. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25071118. - 364. Muss HB, Bynum DL. Adjuvant chemotherapy in older patients with stage III colon cancer: an underused lifesaving treatment. J Clin Oncol 2012;30:2576-2578. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22665545. - 365. Hanna NN, Onukwugha E, Choti MA, et al. Comparative analysis of various prognostic nodal factors, adjuvant chemotherapy and survival among stage III colon cancer patients over 65 years: an analysis using surveillance, epidemiology and end results (SEER)-Medicare data. Colorectal Dis 2012;14:48-55. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/21689262. - 366. McCleary NJ, Meyerhardt JA, Green E, et al. Impact of age on the efficacy of newer adjuvant therapies in patients with stage II/III colon cancer: findings from the ACCENT database. J Clin Oncol 2013;31:2600-2606. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23733765. - 367. Haller DG, O'Connell MJ, Cartwright TH, et al. Impact of age and medical comorbidity on adjuvant treatment outcomes for stage III colon cancer: a pooled analysis of individual patient data from four randomized, controlled trials. Ann Oncol 2015;26:715-724. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25595934. - 368. Rosati G, Lonardi S, Galli F, et al. Oxaliplatin plus fluoropyrimidines as adjuvant therapy for colon cancer in older patients: A subgroup analysis from the TOSCA trial. Eur J Cancer 2021;148:190-201. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33744715. - 369. Cheung WY, Renfro LA, Kerr D, et al. Determinants of early mortality among 37,568 patients with colon cancer who participated in 25 clinical trials from the Adjuvant Colon Cancer Endpoints Database. J Clin Oncol 2016;34:1182-1189. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/26858337. - 370. Biagi JJ, Raphael MJ, Mackillop WJ, et al. Association between time to initiation of adjuvant chemotherapy and survival in colorectal cancer: a systematic review and meta-analysis. JAMA 2011;305:2335-2342. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21642686. - 371. Sun Z, Adam MA, Kim J, et al. Determining the optimal timing for initiation of adjuvant chemotherapy after resection for stage II and III colon cancer. Dis Colon Rectum 2016;59:87-93. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26734965. - 372. Bos AC, van Erning FN, van Gestel YR, et al. Timing of adjuvant chemotherapy and its relation to survival among patients with stage III colon cancer. Eur J Cancer 2015;51:2553-2561. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26360411. - 373. Sargent D, Grothey A, Gray R. Time to initiation of adjuvant chemotherapy and survival in colorectal cancer. JAMA 2011;306:1199; author reply 1200. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21934049. - 374. Comparison of flourouracil with additional levamisole, higher-dose folinic acid, or both, as adjuvant chemotherapy for colorectal cancer: a randomised trial. QUASAR Collaborative Group. Lancet 2000;355:1588-1596. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10821362. - 375. Jager E, Heike M, Bernhard H, et al. Weekly high-dose leucovorin versus low-dose leucovorin combined with fluorouracil in advanced colorectal cancer: results of a randomized multicenter trial. Study Group for Palliative Treatment of Metastatic Colorectal Cancer Study Protocol 1. J Clin Oncol 1996;14:2274-2279. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8708717. - 376. O'Connell MJ. A phase III trial of 5-fluorouracil and leucovorin in the treatment of advanced colorectal cancer. A Mayo Clinic/North Central Cancer Treatment Group study. Cancer 1989;63:1026-1030. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2465076. - 377. Sanoff HK, Carpenter WR, Martin CF, et al. Comparative effectiveness of oxaliplatin vs non-oxaliplatin-containing adjuvant chemotherapy for stage III colon cancer. J Natl Cancer Inst 2012;104:211-227. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22266473. - 378. Sanoff HK, Carpenter WR, Freburger J, et al. Comparison of adverse events during 5-fluorouracil versus 5-fluorouracil/oxaliplatin adjuvant chemotherapy for stage III colon cancer: A population-based analysis. Cancer 2012;118:4309-4320. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22294436. - 379. Schmoll HJ, Twelves C, Sun W, et al. Effect of adjuvant capecitabine or fluorouracil, with or without oxaliplatin, on survival outcomes in stage III colon cancer and the effect of oxaliplatin on post-relapse survival: a pooled analysis of individual patient data from four randomised controlled trials. Lancet Oncol 2014;15:1481-1492. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25456367. - 380. Shah MA, Renfro LA, Allegra CJ, et al. Impact of patient factors on recurrence risk and time dependency of oxaliplatin benefit in patients with colon cancer: analysis from modern-era adjuvant studies in the Adjuvant Colon Cancer End Points (ACCENT) database. J Clin Oncol 2016;34:843-853. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26811529. - 381. Twelves C, Scheithauer W, McKendrick J, et al. Capecitabine versus 5-fluorouracil/folinic acid as adjuvant therapy for stage III colon cancer: final results from the X-ACT trial with analysis by age and preliminary evidence of a pharmacodynamic marker of efficacy. Ann Oncol 2012;23:1190-1197. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21896539. - 382. Schmoll HJ, Tabernero J, Maroun J, et al. Capecitabine plus oxaliplatin compared with fluorouracil/folinic acid as adjuvant therapy for stage III colon cancer: final results of the NO16968 randomized controlled phase III trial. J Clin Oncol 2015;33:3733-3740. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26324362. - 383. Pectasides D, Karavasilis V, Papaxoinis G, et al. Randomized phase III clinical trial comparing the combination of capecitabine and oxaliplatin (CAPOX) with the
combination of 5-fluorouracil, leucovorin and oxaliplatin (modified FOLFOX6) as adjuvant therapy in patients with operated highrisk stage II or stage III colorectal cancer. BMC Cancer 2015;15:384. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25956750. - 384. Andre T, Meyerhardt J, Iveson T, et al. Effect of duration of adjuvant chemotherapy for patients with stage III colon cancer (IDEA collaboration): final results from a prospective, pooled analysis of six randomised, phase 3 trials. Lancet Oncol 2020;21:1620-1629. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33271092. - 385. Iveson TJ, Sobrero AF, Yoshino T, et al. Duration of Adjuvant Doublet Chemotherapy (3 or 6 months) in Patients With High-Risk Stage II Colorectal Cancer. J Clin Oncol 2021;39:631-641. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33439695. - 386. Petrelli F, Labianca R, Zaniboni A, et al. Assessment of Duration and Effects of 3 vs 6 Months of Adjuvant Chemotherapy in High-Risk Stage II Colorectal Cancer: A Subgroup Analysis of the TOSCA Randomized Clinical Trial. JAMA Oncol 2020;6:547-551. Available at: https://pubmed.ncbi.nlm.nih.gov/32053133/. - 387. Petrelli F, Rulli E, Labianca R, et al. Overall survival with 3 or 6 months of adjuvant chemotherapy in Italian TOSCA phase 3 randomised trial. Ann Oncol 2021;32:66-76. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33098997. - 388. Souglakos J, Boukovinas I, Kakolyris S, et al. Three- versus sixmonth adjuvant FOLFOX or CAPOX for high-risk stage II and stage III colon cancer patients: the efficacy results of Hellenic Oncology Research Group (HORG) participation to the International Duration Evaluation of Adjuvant Chemotherapy (IDEA) project. Ann Oncol 2019;30:1304-1310. Available at: https://pubmed.ncbi.nlm.nih.gov/31228203/. - 389. Yoshino T, Yamanaka T, Oki E, et al. Efficacy and Long-term Peripheral Sensory Neuropathy of 3 vs 6 Months of Oxaliplatin-Based Adjuvant Chemotherapy for Colon Cancer: The ACHIEVE Phase 3 Randomized Clinical Trial. JAMA Oncol 2019;5:1574-1581. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31513248. - 390. Yamazaki K, Yamanaka T, Shiozawa M, et al. Oxaliplatin-based adjuvant chemotherapy duration (3 versus 6 months) for high-risk stage II colon cancer: the randomized phase III ACHIEVE-2 trial. Ann Oncol 2021;32:77-84. Available at: - https://www.ncbi.nlm.nih.gov/pubmed/33121997. - 391. Saltz LB, Niedzwiecki D, Hollis D, et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J Clin Oncol 2007;25:3456-3461. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17687149. 392. Rothenberg ML, Meropol NJ, Poplin EA, et al. Mortality associated with irinotecan plus bolus fluorouracil/leucovorin: summary findings of an independent panel. J Clin Oncol 2001;19:3801-3807. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11559717. 393. Papadimitriou CA, Papakostas P, Karina M, et al. A randomized phase III trial of adjuvant chemotherapy with irinotecan, leucovorin and fluorouracil versus leucovorin and fluorouracil for stage II and III colon cancer: a Hellenic Cooperative Oncology Group study. BMC Med 2011;9:10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21281463. 394. Van Cutsem E, Labianca R, Bodoky G, et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J Clin Oncol 2009;27:3117-3125. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19451425. 395. Ychou M, Raoul JL, Douillard JY, et al. A phase III randomised trial of LV5FU2 + irinotecan versus LV5FU2 alone in adjuvant high-risk colon cancer (FNCLCC Accord02/FFCD9802). Ann Oncol 2009;20:674-680. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19179549. 396. Allegra CJ, Yothers G, O'Connell MJ, et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 2011;29:11-16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20940184. 397. Allegra CJ, Yothers G, O'Connell MJ, et al. Bevacizumab in stage II-III colon cancer: 5-year update of the National Surgical Adjuvant Breast and Bowel Project C-08 trial. J Clin Oncol 2013;31:359-364. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23233715. 398. de Gramont A, Van Cutsem E, Schmoll HJ, et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 2012;13:1225-1233. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23168362. 399. Andre T, Vernerey D, Im SA, et al. Bevacizumab as adjuvant treatment of colon cancer: updated results from the S-AVANT phase III study by the GERCOR Group. Ann Oncol 2020;31:246-256. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31959341. 400. Kerr RS, Love S, Segelov E, et al. Adjuvant capecitabine plus bevacizumab versus capecitabine alone in patients with colorectal cancer (QUASAR 2): an open-label, randomised phase 3 trial. Lancet Oncol 2016;17:1543-1557. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27660192. 401. Alberts SR, Sargent DJ, Nair S, et al. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA 2012;307:1383-1393. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22474202. 402. Taieb J, Tabernero J, Mini E, et al. Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage III colon cancer (PETACC-8): an open-label, randomised phase 3 trial. Lancet Oncol 2014;15:862-873. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24928083. 403. Taieb J, Balogoun R, Le Malicot K, et al. Adjuvant FOLFOX +/-cetuximab in full RAS and BRAF wildtype stage III colon cancer patients. Ann Oncol 2017;28:824-830. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28031175. 404. Kuebler JP, Wieand HS, O'Connell MJ, et al. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J Clin Oncol 2007;25:2198-2204. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17470851. 405. Ludmir EB, Arya R, Wu Y, et al. Role of Adjuvant Radiotherapy in Locally Advanced Colonic Carcinoma in the Modern Chemotherapy Era. Ann Surg Oncol 2016;23:856-862. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26480849. - 406. Cantero-Munoz P, Urien MA, Ruano-Ravina A. Efficacy and safety of intraoperative radiotherapy in colorectal cancer: A systematic review. Cancer Lett 2011;306:121-133. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21414718. - 407. Mirnezami R, Chang GJ, Das P, et al. Intraoperative radiotherapy in colorectal cancer: systematic review and meta-analysis of techniques, long-term outcomes, and complications. Surg Oncol 2013;22:22-35. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23270946. - 408. Hong TS, Ritter MA, Tome WA, Harari PM. Intensity-modulated radiation therapy: emerging cancer treatment technology. Br J Cancer 2005;92:1819-1824. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15856036. - 409. Bae BK, Kang MK, Kim JC, et al. Simultaneous integrated boost intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy in preoperative concurrent chemoradiotherapy for locally advanced rectal cancer. Radiat Oncol J 2017;35:208-216. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29037023. - 410. Lee WS, Yun SH, Chun HK, et al. Pulmonary resection for metastases from colorectal cancer: prognostic factors and survival. Int J Colorectal Dis 2007;22:699-704. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17109105. - 411. Van Cutsem E, Nordlinger B, Adam R, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer 2006;42:2212-2221. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16904315. - 412. Yoo PS, Lopez-Soler RI, Longo WE, Cha CH. Liver resection for metastatic colorectal cancer in the age of neoadjuvant chemotherapy and bevacizumab. Clin Colorectal Cancer 2006;6:202-207. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17026789. - 413. Alberts SR, Horvath WL, Sternfeld WC, et al. Oxaliplatin, fluorouracil, and leucovorin for patients with unresectable liver-only metastases from colorectal cancer: a North Central Cancer Treatment Group phase II study. J Clin Oncol 2005;23:9243-9249. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16230673. - 414. Dawood O, Mahadevan A, Goodman KA. Stereotactic body radiation therapy for liver metastases. Eur J Cancer 2009;45:2947-2959. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19773153. - 415. Kemeny N. Management of liver metastases from colorectal cancer. Oncology (Williston Park) 2006;20:1161-1176, 1179; discussion 1179-1180, 1185-1166. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17024869. - 416. Muratore A, Zorzi D, Bouzari H, et al. Asymptomatic colorectal cancer with un-resectable liver metastases: immediate colorectal resection or upfront systemic chemotherapy? Ann Surg Oncol 2007;14:766-770. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17103261. - 417. Fong Y, Cohen AM, Fortner JG, et al. Liver resection for colorectal metastases. J Clin Oncol 1997;15:938-946. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9060531. - 418. Hayashi M, Inoue Y, Komeda K, et al. Clinicopathological analysis of recurrence patterns and prognostic factors for survival after hepatectomy for colorectal liver metastasis. BMC Surg 2010;10:27. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20875094. - 419. Tsai M-S, Su Y-H, Ho M-C, et al. Clinicopathological features and prognosis in resectable synchronous and metachronous colorectal liver metastasis. Ann Surg Oncol 2007;14:786-794. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17103254. - 420. Foster JH. Treatment of metastatic disease of the liver: a skeptic's view. Semin Liver Dis 1984;4:170-179. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6205450. - 421. Stangl R, Altendorf-Hofmann A, Charnley RM, Scheele J. Factors influencing the natural history of colorectal liver metastases. Lancet 1994;343:1405-1410. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/7515134. - 422. Adam R, Delvart V, Pascal G, et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 2004;240:644-657; discussion 657-648. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15383792. - 423. Choti MA, Sitzmann JV, Tiburi MF, et al. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 2002;235:759-766. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/12035031. - 424. Elias D, Liberale G, Vernerey D, et al. Hepatic and extrahepatic colorectal metastases: when resectable, their localization does not matter, but their total number has a prognostic effect. Ann Surg Oncol 2005;12:900-909. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/16184442. - 425. Fong Y, Salo J. Surgical therapy of hepatic colorectal metastasis. Semin Oncol 1999;26:514-523. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10528899. - 426. Pawlik TM, Scoggins CR, Zorzi D, et al. Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases. Ann Surg 2005;241:715-722. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15849507. - 427. Jung EM, Dong Y, Jung F. Current aspects of multimodal ultrasound liver diagnostics using contrast-enhanced ultrasonography (CEUS), fat evaluation, fibrosis assessment, and perfusion analysis An update. Clin Hemorheol Microcirc 2023;83:181-193. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36776044. - 428. Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal - cancer. Ann Oncol 2016;27:1386-1422. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27380959. - 429. Venook AP. The Kemeny article reviewed management of liver metastases from colorectal cancer: review 2. Oncology 2006;20. Available at: http://www.cancernetwork.com/display/article/10165/108033. - 430. Kanas GP, Taylor A, Primrose JN, et al. Survival after liver resection in metastatic colorectal cancer: review and meta-analysis of prognostic factors. Clin Epidemiol 2012;4:283-301. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23152705. - 431. Aloia TA, Vauthey JN, Loyer EM, et al. Solitary colorectal liver metastasis: resection determines outcome. Arch Surg 2006;141:460-466; discussion 466-467. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16702517. - 432. Hur H, Ko YT, Min BS, et al. Comparative study of resection and radiofrequency ablation in the treatment of solitary colorectal liver metastases. Am J Surg 2009;197:728-736. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18789428. - 433. Lee WS, Yun SH, Chun HK, et al. Clinical outcomes of hepatic resection and radiofrequency ablation in patients with solitary colorectal liver metastasis. J Clin Gastroenterol 2008;42:945-949. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18438208. - 434. Charnsangavej C, Clary B, Fong Y, et al. Selection of patients for resection of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol 2006;13:1261-1268. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16947009. - 435. Gonzalez M, Poncet A, Combescure C, et al. Risk factors for survival after lung metastasectomy in colorectal cancer patients: a systematic review and meta-analysis. Ann Surg Oncol 2013;20:572-579. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23104709. - 436. Gonzalez M, Gervaz P. Risk factors for survival after lung metastasectomy in colorectal cancer patients: systematic review and meta-analysis. Future Oncol 2015;11:31-33. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25662325. 437. Brouquet A, Vauthey JN, Contreras CM, et al. Improved survival after resection of liver and lung colorectal metastases compared with liver-only metastases: a study of 112 patients with limited lung metastatic disease. J Am Coll Surg 2011;213:62-69. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21700179. 438. Hadden WJ, de Reuver PR, Brown K, et al. Resection of colorectal liver metastases and extra-hepatic disease: a systematic review and proportional meta-analysis of survival outcomes. HPB (Oxford) 2016;18:209-220. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27017160. 439. Headrick JR, Miller DL, Nagorney DM, et al. Surgical treatment of hepatic and pulmonary metastases from colon cancer. Ann Thorac Surg 2001;71:975-979. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11269484. - 440. Marin C, Robles R, Lopez Conesa A, et al. Outcome of strict patient selection for surgical treatment of hepatic and pulmonary metastases from colorectal cancer. Dis Colon Rectum 2013;56:43-50. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23222279. - 441. Pulitano C, Bodingbauer M, Aldrighetti L, et al. Liver resection for colorectal metastases in presence of extrahepatic disease: results from an international multi-institutional analysis. Ann Surg Oncol 2011;18:1380-1388. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21136180. - 442. Wiegering A, Riegel J, Wagner J, et al. The impact of pulmonary metastasectomy in patients with previously resected colorectal cancer liver metastases. PLoS One 2017;12:e0173933. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28328956. - 443. Carpizo DR, Are C, Jarnagin W, et al. Liver resection for metastatic colorectal cancer in patients with concurrent extrahepatic disease: results in 127 patients treated at a single center. Ann Surg Oncol 2009;16:2138-2146. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19495884. 444. Carpizo DR, D'Angelica M. Liver resection for metastatic colorectal cancer in the presence of extrahepatic disease. Ann Surg Oncol 2009;16:2411-2421. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19554376. - 445. Chua TC, Saxena A, Liauw W, et al. Hepatectomy and resection of concomitant extrahepatic disease for colorectal liver metastases--a systematic review. Eur J Cancer 2012;48:1757-1765. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22153217. - 446. Andreou A, Brouquet A, Abdalla EK, et al. Repeat hepatectomy for recurrent colorectal liver metastases is associated with a high survival rate. HPB (Oxford) 2011;13:774-782. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21999590. - 447. de Jong MC, Mayo SC, Pulitano C, et al. Repeat curative intent liver surgery is safe and effective for recurrent colorectal liver metastasis: results from an international multi-institutional analysis. J Gastrointest Surg 2009;13:2141-2151. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19795176. 448. Homayounfar K, Bleckmann A, Conradi LC, et al. Metastatic recurrence after complete resection of colorectal liver metastases: impact of surgery and chemotherapy on survival. Int J Colorectal Dis 2013;28:1009-1017. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23371333. 449. Neeff HP, Drognitz O, Holzner P, et al. Outcome after repeat resection of liver metastases from colorectal cancer. Int J Colorectal Dis 2013;28:1135-1141. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23468250. - 450. Salah S, Watanabe K, Park JS, et al. Repeated
resection of colorectal cancer pulmonary oligometastases: pooled analysis and prognostic assessment. Ann Surg Oncol 2013;20:1955-1961. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23334254. - 451. Wurster EF, Tenckhoff S, Probst P, et al. A systematic review and meta-analysis of the utility of repeated versus single hepatic resection for colorectal cancer liver metastases. HPB (Oxford) 2017;19:491-497. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28347640. - 452. Luo LX, Yu ZY, Huang JW, Wu H. Selecting patients for a second hepatectomy for colorectal metastases: An systemic review and meta-analysis. Eur J Surg Oncol 2014;40:1036-1048. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24915859. - 453. Adam R, Bismuth H, Castaing D, et al. Repeat hepatectomy for colorectal liver metastases. Ann Surg 1997;225:51-60; discussion 60-52. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8998120. - 454. Poultsides GA, Servais EL, Saltz LB, et al. Outcome of primary tumor in patients with synchronous stage IV colorectal cancer receiving combination chemotherapy without surgery as initial treatment. J Clin Oncol 2009;27:3379-3384. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19487380. - 455. Gillams A, Goldberg N, Ahmed M, et al. Thermal ablation of colorectal liver metastases: a position paper by an international panel of ablation experts, the interventional oncology sans frontieres meeting 2013. Eur Radiol 2015;25:3438-3454. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25994193. - 456. Solbiati L, Ahmed M, Cova L, et al. Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology 2012;265:958-968. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23091175. - 457. Shady W, Petre EN, Gonen M, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomesa 10-year experience at a single center. Radiology 2015:142489. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26267832. - 458. Ruers T, Van Coevorden F, Punt CJ, et al. Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial. J Natl Cancer Inst 2017;109. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28376151. - 459. Lee MT, Kim JJ, Dinniwell R, et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol 2009;27:1585-1591. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/19255313. - 460. Rusthoven KE, Kavanagh BD, Cardenes H, et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol 2009;27:1572-1578. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19255321. - 461. Alsina J, Choti MA. Liver-directed therapies in colorectal cancer. Semin Oncol 2011;38:561-567. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21810515. - 462. Johnston FM, Mavros MN, Herman JM, Pawlik TM. Local therapies for hepatic metastases. J Natl Compr Canc Netw 2013;11:153-160. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23411382. - 463. Park J, Chen YJ, Lu WP, Fong Y. The evolution of liver-directed treatments for hepatic colorectal metastases. Oncology (Williston Park) 2014;28:991-1003. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25403632. - 464. Zacharias AJ, Jayakrishnan TT, Rajeev R, et al. Comparative effectiveness of hepatic artery based therapies for unresectable colorectal liver metastases: a meta-analysis. PLoS One 2015;10:e0139940. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26448327. - 465. Kemeny N, Huang Y, Cohen AM, et al. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med 1999;341:2039-2048. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10615075. - 466. Kemeny NE, Gonen M. Hepatic arterial infusion after liver resection. N Engl J Med 2005;352:734-735. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15716576. - 467. Chan DL, Alzahrani NA, Morris DL, Chua TC. Systematic review and meta-analysis of hepatic arterial infusion chemotherapy as bridging therapy for colorectal liver metastases. Surg Oncol 2015;24:162-171. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26133575. - 468. Levi FA, Boige V, Hebbar M, et al. Conversion to resection of liver metastases from colorectal cancer with hepatic artery infusion of combined chemotherapy and systemic cetuximab in multicenter trial OPTILIV. Ann Oncol 2016;27:267-274. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26578731. - 469. Fiorentini G, Aliberti C, Tilli M, et al. Intra-arterial infusion of irinotecan-loaded drug-eluting beads (DEBIRI) versus intravenous therapy (FOLFIRI) for hepatic metastases from colorectal cancer: final results of a phase III study. Anticancer Res 2012;32:1387-1395. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22493375. - 470. Richardson AJ, Laurence JM, Lam VW. Transarterial chemoembolization with irinotecan beads in the treatment of colorectal liver metastases: systematic review. J Vasc Interv Radiol 2013;24:1209-1217. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23885916. - 471. Martin RC, 2nd, Scoggins CR, Schreeder M, et al. Randomized controlled trial of irinotecan drug-eluting beads with simultaneous FOLFOX and bevacizumab for patients with unresectable colorectal liver-limited metastasis. Cancer 2015;121:3649-3658. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26149602. - 472. Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 2010;33:41-52. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19908093. - 473. Martin RC, Howard J, Tomalty D, et al. Toxicity of irinotecan-eluting beads in the treatment of hepatic malignancies: results of a multi-institutional registry. Cardiovasc Intervent Radiol 2010;33:960-966. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20661569. - 474. Pawlik TM, Reyes DK, Cosgrove D, et al. Phase II trial of sorafenib combined with concurrent transarterial chemoembolization with drug- eluting beads for hepatocellular carcinoma. J Clin Oncol 2011;29:3960-3967. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21911714. - 475. Reyes DK, Vossen JA, Kamel IR, et al. Single-center phase II trial of transarterial chemoembolization with drug-eluting beads for patients with unresectable hepatocellular carcinoma: initial experience in the United States. Cancer J 2009;15:526-532. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20010173. - 476. van Malenstein H, Maleux G, Vandecaveye V, et al. A randomized phase II study of drug-eluting beads versus transarterial chemoembolization for unresectable hepatocellular carcinoma. Onkologie 2011;34:368-376. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21734423. - 477. Vogl TJ, Lammer J, Lencioni R, et al. Liver, gastrointestinal, and cardiac toxicity in intermediate hepatocellular carcinoma treated with PRECISION TACE with drug-eluting beads: results from the PRECISION V randomized trial. AJR Am J Roentgenol 2011;197:W562-570. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21940527. - 478. Riemsma RP, Bala MM, Wolff R, Kleijnen J. Transarterial (chemo)embolisation versus no intervention or placebo intervention for liver metastases. Cochrane Database Syst Rev 2013;4:CD009498. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23633373. - 479. Hendlisz A, Van den Eynde M, Peeters M, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 2010;28:3687-3694. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20567019. 480. Benson AB, 3rd, Geschwind JF, Mulcahy MF, et al. Radioembolisation for liver metastases: results from a prospective 151 patient multi-institutional phase II study. Eur J Cancer 2013;49:3122-3130. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23777743. 481. Sofocleous CT, Violari EG, Sotirchos VS, et al. Radioembolization as a salvage therapy for heavily pretreated patients with colorectal cancer liver metastases: factors that affect outcomes. Clin Colorectal Cancer 2015;14:296-305. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26277696. 482. Hickey R, Lewandowski RJ, Prudhomme T, et al. 90Y radioembolization of colorectal hepatic metastases using glass microspheres: safety and survival outcomes from a 531-patient multicenter study. J Nucl Med 2016;57:665-671. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26635340. 483. Kurilova I, Beets-Tan RGH, Flynn J, et al. Factors Affecting Oncologic Outcomes of 90Y Radioembolization of Heavily Pre-Treated Patients With Colon Cancer Liver Metastases. Clin Colorectal Cancer 2019;18:8-18. Available at:
https://www.ncbi.nlm.nih.gov/pubmed/30297264. - 484. Kennedy AS, Ball D, Cohen SJ, et al. Multicenter evaluation of the safety and efficacy of radioembolization in patients with unresectable colorectal liver metastases selected as candidates for (90)Y resin microspheres. J Gastrointest Oncol 2015;6:134-142. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25830033. - 485. Saxena A, Meteling B, Kapoor J, et al. Is yttrium-90 radioembolization a viable treatment option for unresectable, chemorefractory colorectal cancer liver metastases? A large single-center experience of 302 patients. Ann Surg Oncol 2015;22:794-802. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25323474. - 486. van Hazel GA, Heinemann V, Sharma NK, et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol 2016;34:1723-1731. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26903575. - 487. Wasan HS, Gibbs P, Sharma NK, et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017;18:1159-1171. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28781171. - 488. Gibbs P, Heinemann V, Sharma NK, et al. Effect of Primary Tumor Side on Survival Outcomes in Untreated Patients With Metastatic Colorectal Cancer When Selective Internal Radiation Therapy Is Added to Chemotherapy: Combined Analysis of Two Randomized Controlled Studies. Clin Colorectal Cancer 2018;17:e617-e629. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30033117. - 489. Rosenbaum CE, Verkooijen HM, Lam MG, et al. Radioembolization for treatment of salvage patients with colorectal cancer liver metastases: a systematic review. J Nucl Med 2013;54:1890-1895. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24071510. - 490. Saxena A, Bester L, Shan L, et al. A systematic review on the safety and efficacy of yttrium-90 radioembolization for unresectable, chemorefractory colorectal cancer liver metastases. J Cancer Res Clin Oncol 2014;140:537-547. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24318568. - 491. Townsend A, Price T, Karapetis C. Selective internal radiation therapy for liver metastases from colorectal cancer. Cochrane Database Syst Rev 2009:CD007045. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19821394. - 492. Abdalla EK, Vauthey J-N, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004;239:818-825. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15166961. - 493. Correa-Gallego C, Gonen M, Fischer M, et al. Perioperative complications influence recurrence and survival after resection of hepatic colorectal metastases. Ann Surg Oncol 2013;20:2477-2484. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23608971. - 494. Wang X, Sofocleous CT, Erinjeri JP, et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol 2013;36:166-175. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22535243. - 495. Scheffer HJ, Vroomen LG, Nielsen K, et al. Colorectal liver metastatic disease: efficacy of irreversible electroporation--a single-arm phase II clinical trial (COLDFIRE-2 trial). BMC Cancer 2015;15:772. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26497813. - 496. Elias D, De Baere T, Smayra T, et al. Percutaneous radiofrequency thermoablation as an alternative to surgery for treatment of liver tumour recurrence after hepatectomy. Br J Surg 2002;89:752-756. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12027986. - 497. Sofocleous CT, Petre EN, Gonen M, et al. CT-guided radiofrequency ablation as a salvage treatment of colorectal cancer hepatic metastases developing after hepatectomy. J Vasc Interv Radiol 2011;22:755-761. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21514841. - 498. Sucandy I, Cheek S, Golas BJ, et al. Longterm survival outcomes of patients undergoing treatment with radiofrequency ablation for hepatocellular carcinoma and metastatic colorectal cancer liver tumors. HPB (Oxford) 2016;18:756-763. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27593593. - 499. de Jong MC, Pulitano C, Ribero D, et al. Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis: an international multi-institutional analysis of 1669 patients. Ann Surg 2009;250:440-448. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19730175. - 500. Gillams A, Khan Z, Osborn P, Lees W. Survival after radiofrequency ablation in 122 patients with inoperable colorectal lung metastases. Cardiovasc Intervent Radiol 2013;36:724-730. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23070108. - 501. Gleisner AL, Choti MA, Assumpcao L, et al. Colorectal liver metastases: recurrence and survival following hepatic resection, radiofrequency ablation, and combined resection-radiofrequency ablation. Arch Surg 2008;143:1204-1212. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19075173. - 502. Reuter NP, Woodall CE, Scoggins CR, et al. Radiofrequency ablation vs. resection for hepatic colorectal metastasis: therapeutically equivalent? J Gastrointest Surg 2009;13:486-491. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18972167. - 503. Abdalla EK. Commentary: Radiofrequency ablation for colorectal liver metastases: do not blame the biology when it is the technology. Am J Surg 2009;197:737-739. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18789420. - 504. Ruers T, Punt C, Van Coevorden F, et al. Radiofrequency ablation combined with systemic treatment versus systemic treatment alone in patients with non-resectable colorectal liver metastases: a randomized EORTC Intergroup phase II study (EORTC 40004). Ann Oncol 2012;23:2619-2626. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22431703. - 505. Bala MM, Riemsma RP, Wolff R, Kleijnen J. Microwave coagulation for liver metastases. Cochrane Database Syst Rev 2013;10:CD010163. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24122576. - 506. Bala MM, Riemsma RP, Wolff R, Kleijnen J. Cryotherapy for liver metastases. Cochrane Database Syst Rev 2013;6:CD009058. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23740609. - 507. Riemsma RP, Bala MM, Wolff R, Kleijnen J. Percutaneous ethanol injection for liver metastases. Cochrane Database Syst Rev 2013;5:CD008717. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23728679. 508. Riemsma RP, Bala MM, Wolff R, Kleijnen J. Electro-coagulation for liver metastases. Cochrane Database Syst Rev 2013;5:CD009497. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23728692. 509. Cirocchi R, Trastulli S, Boselli C, et al. Radiofrequency ablation in the treatment of liver metastases from colorectal cancer. Cochrane Database Syst Rev 2012;6:CD006317. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22696357. 510. Weng M, Zhang Y, Zhou D, et al. Radiofrequency ablation versus resection for colorectal cancer liver metastases: a meta-analysis. PLoS One 2012;7:e45493. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23029051. - 511. Wong SL, Mangu PB, Choti MA, et al. American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol 2010;28:493-508. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19841322. - 512. Shady W, Petre EN, Do KG, et al. Percutaneous Microwave versus Radiofrequency Ablation of Colorectal Liver Metastases: Ablation with Clear Margins (A0) Provides the Best Local Tumor Control. J Vasc Interv Radiol 2018;29:268-275.e261. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29203394. - 513. Meijerink MR, Puijk RS, van Tilborg A, et al. Radiofrequency and Microwave Ablation Compared to Systemic Chemotherapy and to Partial Hepatectomy in the Treatment of Colorectal Liver Metastases: A Systematic Review and Meta-Analysis. Cardiovasc Intervent Radiol 2018;41:1189-1204. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29666906. - 514. Calandri M, Yamashita S, Gazzera C, et al. Ablation of colorectal liver metastasis: Interaction of ablation margins and RAS mutation profiling on local tumour progression-free survival. Eur Radiol 2018;28:2727-2734. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29417253. - 515. Odisio BC, Yamashita S, Huang SY, et al. Local tumour progression after percutaneous ablation of colorectal liver metastases according to RAS mutation status. Br J Surg 2017;104:760-768. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28240361. - 516. Shady W, Petre EN, Vakiani E, et al. Kras mutation is a marker of worse oncologic outcomes after percutaneous radiofrequency ablation of colorectal liver metastases. Oncotarget 2017;8:66117-66127. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29029497. - 517. de Baere T, Auperin A, Deschamps F, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol 2015;26:987-991. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25688058. - 518. Kurilova I, Gonzalez-Aguirre A, Beets-Tan RG, et al. Microwave Ablation in the Management of Colorectal Cancer Pulmonary Metastases. Cardiovasc Intervent Radiol 2018;41:1530-1544. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29845348. - 519. Callstrom MR, Woodrum DA, Nichols FC, et al. Multicenter Study of Metastatic Lung Tumors Targeted by Interventional Cryoablation Evaluation (SOLSTICE). J Thorac Oncol 2020;15:1200-1209. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32151777. - 520. Fonck M, Perez JT, Catena V, et al. Pulmonary Thermal Ablation Enables Long Chemotherapy-Free Survival in Metastatic Colorectal Cancer Patients. Cardiovasc Intervent Radiol 2018;41:1727-1734. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29766240. - 521. Agolli L, Bracci S, Nicosia L, et al. Lung metastases treated with stereotactic ablative radiation therapy in oligometastatic colorectal cancer patients: outcomes and prognostic factors after long-term follow-up. Clin Colorectal Cancer 2016;16:58-64. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27522627. - 522. Chang DT, Swaminath A, Kozak M, et al. Stereotactic body radiotherapy for colorectal liver metastases: A pooled analysis. Cancer 2011;117:4060-4069. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21432842. - 523. Meyer J, Czito B, Yin F-F, Willett C. Advanced radiation therapy technologies in the treatment of rectal and anal cancer: intensity-modulated photon therapy and proton therapy. Clin Colorectal Cancer 2007;6:348-356. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17311699. 524. Topkan E, Onal HC, Yavuz MN. Managing liver metastases with conformal radiation therapy. J Support Oncol 2008;6:9-13, 15. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18257395. 525. ACR Practive Parameter for Intensity Modulated Radiation Therapy (IMRT). The American College of Radiology; 2016. Available at: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/IMRT-RO.pdf. Accessed November 17, 2020. 526. Ahmed KA, Scott JG, Arrington JA, et al. Radiosensitivity of Lung Metastases by Primary Histology and Implications for Stereotactic Body Radiation Therapy Using the Genomically Adjusted Radiation Dose. J Thorac Oncol 2018;13:1121-1127. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29733909. 527. Ahmed KA, Caudell JJ, El-Haddad G, et al. Radiosensitivity Differences Between Liver Metastases Based on Primary Histology Suggest Implications for Clinical Outcomes After Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2016;95:1399-1404. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27319288. 528. Joo JH, Park JH, Kim JC, et al. Local Control Outcomes Using Stereotactic Body Radiation Therapy for Liver Metastases From Colorectal Cancer. Int J Radiat Oncol Biol Phys 2017;99:876-883. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29063852. 529. Siva S, MacManus M, Ball D. Stereotactic radiotherapy for pulmonary oligometastases: a systematic review. J Thorac Oncol 2010;5:1091-1099. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20479693. 530. Helou J, Thibault I, Poon I, et al. Stereotactic Ablative Radiation Therapy for Pulmonary Metastases: Histology, Dose, and Indication Matter. Int J Radiat Oncol Biol Phys 2017;98:419-427. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28463162. 531. Palma DA, Olson R, Harrow S, et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J Clin Oncol 2020;38:2830-2838. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32484754. 532. Franko J, Shi Q, Meyers JP, et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol 2016;17:1709-1719. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27743922. 533. Klaver YL, Leenders BJ, Creemers GJ, et al. Addition of biological therapies to palliative chemotherapy prolongs survival in patients with peritoneal carcinomatosis of colorectal origin. Am J Clin Oncol 2013;36:157-161. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22314003. 534. Takahashi H, Okabayashi K, Tsuruta M, et al. Self-expanding metallic stents versus surgical intervention as palliative therapy for obstructive colorectal cancer: a meta-analysis. World J Surg 2015;39:2037-2044. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25894403. 535. van Hooft JE, van Halsema EE, Vanbiervliet G, et al. Self-expandable metal stents for obstructing colonic and extracolonic cancer: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Gastrointest Endosc 2014;80:747-761 e741-775. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25436393. 536. Cennamo V, Fuccio L, Mutri V, et al. Does stent placement for advanced colon cancer increase the risk of perforation during bevacizumab-based therapy? Clin Gastroenterol Hepatol 2009;7:1174-1176. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19631290. 537. Small AJ, Coelho-Prabhu N, Baron TH. Endoscopic placement of self-expandable metal stents for malignant colonic obstruction: long-term outcomes and complication factors. Gastrointest Endosc 2010;71:560-572. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20189515. - 538. Baratti D, Kusamura S, Pietrantonio F, et al. Progress in treatments for colorectal cancer peritoneal metastases during the years 2010-2015. A systematic review. Crit Rev Oncol Hematol 2016;100:209-222. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26867984. - 539. Chua TC, Pelz JO, Kerscher A, et al. Critical analysis of 33 patients with peritoneal carcinomatosis secondary to colorectal and appendiceal signet ring cell carcinoma. Ann Surg Oncol 2009;16:2765-2770. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19641972. - 540. Elias D, Gilly F, Boutitie F, et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol 2010;28:63-68. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19917863. - 541. Esquivel J, Sticca R, Sugarbaker P, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. Society of Surgical Oncology. Ann Surg Oncol 2007;14:128-133. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17072675. - 542. Goere D, Malka D, Tzanis D, et al. Is there a possibility of a cure in patients with colorectal peritoneal carcinomatosis amenable to complete cytoreductive surgery and intraperitoneal chemotherapy? Ann Surg 2013;257:1065-1071. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23299520. - 543. Glehen O, Gilly FN, Boutitie F, et al. Toward curative treatment of peritoneal carcinomatosis from nonovarian origin by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy: a multi-institutional study of 1,290 patients. Cancer 2010;116:5608-5618. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20737573. - 544. Haslinger M, Francescutti V, Attwood K, et al. A contemporary analysis of morbidity and outcomes in cytoreduction/hyperthermic intraperitoneal chemoperfusion. Cancer Med 2013;2:334-342. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23930210. - 545. Kwakman R, Schrama AM, van Olmen JP, et al. Clinicopathological parameters in patient selection for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal cancer metastases: A meta-analysis. Ann Surg 2016;263:1102-1111. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26756756. - 546. Tabrizian P, Shrager B, Jibara G, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis: outcomes from a single tertiary institution. J Gastrointest Surg
2014;18:1024-1031. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24577736. - 547. Yan TD, Black D, Savady R, Sugarbaker PH. Systematic review on the efficacy of cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal carcinoma. J Clin Oncol 2006;24:4011-4019. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16921055. - 548. Verwaal VJ, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol 2003;21:3737-3743. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14551293. - 549. Verwaal VJ, Bruin S, Boot H, et al. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol 2008;15:2426-2432. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18521686. - 550. Sugarbaker PH, Ryan DP. Cytoreductive surgery plus hyperthermic perioperative chemotherapy to treat peritoneal metastases from colorectal cancer: standard of care or an experimental approach? Lancet Oncol 2012;13:e362-369. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22846841. 551. El Halabi H, Gushchin V, Francis J, et al. The role of cytoreductive surgery and heated intraperitoneal chemotherapy (CRS/HIPEC) in patients with high-grade appendiceal carcinoma and extensive peritoneal carcinomatosis. Ann Surg Oncol 2012;19:110-114. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21701929. - 552. Shaib WL, Martin LK, Choi M, et al. Hyperthermic intraperitoneal chemotherapy following cytoreductive surgery improves outcome in patients with primary appendiceal mucinous adenocarcinoma: a pooled analysis from three tertiary care centers. Oncologist 2015;20:907-914. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26070916. - 553. Faris JE, Ryan DP. Controversy and consensus on the management of patients with pseudomyxoma peritonei. Curr Treat Options Oncol 2013;14:365-373. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23934509. - 554. Quenet F, Elias D, Roca L, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2021;22:256-266. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33476595. - 555. Goere D, Glehen O, Quenet F, et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE 15): a randomised, phase 3 study. Lancet Oncol 2020;21:1147-1154. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32717180. - 556. Klaver YL, Hendriks T, Lomme RM, et al. Hyperthermia and intraperitoneal chemotherapy for the treatment of peritoneal carcinomatosis: an experimental study. Ann Surg 2011;254:125-130. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21502859. - 557. Cashin PH, Mahteme H, Spang N, et al. Cytoreductive surgery and intraperitoneal chemotherapy versus systemic chemotherapy for colorectal peritoneal metastases: A randomised trial. Eur J Cancer 2016;53:155-162. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26751236. - 558. van Oudheusden TR, Nienhuijs SW, Luyer MD, et al. Incidence and treatment of recurrent disease after cytoreductive surgery and intraperitoneal chemotherapy for peritoneally metastasized colorectal cancer: A systematic review. Eur J Surg Oncol 2015;41:1269-1277. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26175345. - 559. Esquivel J. Colorectal cancer with peritoneal metastases: a plea for cooperation between medical and surgical oncologists. Oncology (Williston Park) 2015;29:521-522. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26178340. - 560. Loggie BW, Thomas P. Gastrointestinal cancers with peritoneal carcinomatosis: surgery and hyperthermic intraperitoneal chemotherapy. Oncology (Williston Park) 2015;29:515-521. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26178339. - 561. McRee AJ, O'Neil BH. The role of HIPEC in gastrointestinal malignancies: controversies and conclusions. Oncology (Williston Park) 2015;29:523-524, C523. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26178341. - 562. O'Dwyer S, Verwaal VJ, Sugarbaker PH. Evolution of treatments for peritoneal metastases from colorectal cancer. J Clin Oncol 2015;33:2122-2123. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25897165. - 563. Rovers KP, Bakkers C, van Erning FN, et al. Adjuvant Systemic Chemotherapy vs Active Surveillance Following Up-front Resection of Isolated Synchronous Colorectal Peritoneal Metastases. JAMA Oncol 2020;6:e202701. Available at: - https://www.ncbi.nlm.nih.gov/pubmed/32672798. - 564. Rovers KP, Bakkers C, Nienhuijs SW, et al. Perioperative Systemic Therapy vs Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy Alone for Resectable Colorectal Peritoneal Metastases: A Phase 2 Randomized Clinical Trial. JAMA Surg 2021;156:710-720. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34009291. - 565. Altendorf-Hofmann A, Scheele J. A critical review of the major indicators of prognosis after resection of hepatic metastases from colorectal carcinoma. Surg Oncol Clin N Am 2003;12:165-192. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12735137. - 566. Pawlik TM, Schulick RD, Choti MA. Expanding criteria for resectability of colorectal liver metastases. Oncologist 2008;13:51-64. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18245012. - 567. Pozzo C, Basso M, Cassano A, et al. Neoadjuvant treatment of unresectable liver disease with irinotecan and 5-fluorouracil plus folinic acid in colorectal cancer patients. Ann Oncol 2004;15:933-939. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15151951. - 568. Vauthey J-N, Zorzi D, Pawlik TM. Making unresectable hepatic colorectal metastases resectable--does it work? Semin Oncol 2005;32:118-122. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16399448. - 569. Covey AM, Brown KT, Jarnagin WR, et al. Combined portal vein embolization and neoadjuvant chemotherapy as a treatment strategy for resectable hepatic colorectal metastases. Ann Surg 2008;247:451-455. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18376189. - 570. Folprecht G, Grothey A, Alberts S, et al. Neoadjuvant treatment of unresectable colorectal liver metastases: correlation between tumour response and resection rates. Ann Oncol 2005;16:1311-1319. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15870084. - 571. Bilchik AJ, Poston G, Curley SA, et al. Neoadjuvant chemotherapy for metastatic colon cancer: a cautionary note. J Clin Oncol 2005;23:9073-9078. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16361615. - 572. Choti MA. Chemotherapy-associated hepatotoxicity: do we need to be concerned? Ann Surg Oncol 2009;16:2391-2394. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19554374. - 573. Kishi Y, Zorzi D, Contreras CM, et al. Extended preoperative chemotherapy does not improve pathologic response and increases postoperative liver insufficiency after hepatic resection for colorectal liver metastases. Ann Surg Oncol 2010;17:2870-2876. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20567921. - 574. Rubbia-Brandt L, Audard V, Sartoretti P, et al. Severe hepatic sinusoidal obstruction associated with oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Ann Oncol 2004;15:460-466. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14998849. - 575. Vauthey J-N, Pawlik TM, Ribero D, et al. Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 2006;24:2065-2072. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16648507. - 576. Zhao J, van Mierlo KMC, Gomez-Ramirez J, et al. Systematic review of the influence of chemotherapy-associated liver injury on outcome after partial hepatectomy for colorectal liver metastases. Br J Surg 2017;104:990-1002. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28542731. - 577. Delaunoit T, Alberts SR, Sargent DJ, et al. Chemotherapy permits resection of metastatic colorectal cancer: experience from Intergroup N9741. Ann Oncol 2005;16:425-429. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15677624. - 578. Falcone A, Ricci S, Brunetti I, et al. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line
treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol 2007;25:1670-1676. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17470860. - 579. Souglakos J, Androulakis N, Syrigos K, et al. FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): a multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG). Br J Cancer 2006;94:798-805. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16508637. - 580. Masi G, Vasile E, Loupakis F, et al. Randomized trial of two induction chemotherapy regimens in metastatic colorectal cancer: an updated analysis. J Natl Cancer Inst 2011;103:21-30. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21123833. 581. Adam R, Avisar E, Ariche A, et al. Five-year survival following hepatic resection after neoadjuvant therapy for nonresectable colorectal. Ann Surg Oncol 2001;8:347-353. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11352309. - 582. Pawlik TM, Olino K, Gleisner AL, et al. Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome. J Gastrointest Surg 2007;11:860-868. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17492335. - 583. Rivoire M, De Cian F, Meeus P, et al. Combination of neoadjuvant chemotherapy with cryotherapy and surgical resection for the treatment of unresectable liver metastases from colorectal carcinoma. Cancer 2002;95:2283-2292. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12436433. - 584. van Mierlo KM, Zhao J, Kleijnen J, et al. The influence of chemotherapy-associated sinusoidal dilatation on short-term outcome after partial hepatectomy for colorectal liver metastases: A systematic review with meta-analysis. Surg Oncol 2016;25:298-307. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27566036. - 585. Scappaticci FA, Fehrenbacher L, Cartwright T, et al. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 2005;91:173-180. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16118771. - 586. Snoeren N, van Hillegersberg R, Schouten SB, et al. Randomized phase III study to assess efficacy and safety of adjuvant CAPOX with or without bevacizumab in patients after resection of colorectal liver metastases: HEPATICA study. Neoplasia 2017;19:93-99. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28088688. - 587. Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol 2007;25:4779-4786. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17947725. - 588. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-2342. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15175435. - 589. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008;26:2013-2019. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18421054. - 590. Tang W, Ren L, Liu T, et al. Bevacizumab Plus mFOLFOX6 Versus mFOLFOX6 Alone as First-Line Treatment for RAS Mutant Unresectable Colorectal Liver-Limited Metastases: The BECOME Randomized Controlled Trial. J Clin Oncol 2020;38:3175-3184. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32749938. - 591. Moretto R, Rossini D, Zucchelli G, et al. Oligometastatic colorectal cancer: prognosis, role of locoregional treatments and impact of first-line chemotherapy-a pooled analysis of TRIBE and TRIBE2 studies by Gruppo Oncologico del Nord Ovest. Eur J Cancer 2020;139:81-89. Available at: https://pubmed.ncbi.nlm.nih.gov/32979645/. - 592. Cremolini C, Antoniotti C, Stein A, et al. Individual Patient Data Meta-Analysis of FOLFOXIRI Plus Bevacizumab Versus Doublets Plus Bevacizumab as Initial Therapy of Unresectable Metastatic Colorectal Cancer. J Clin Oncol 2020:Jco2001225. Available at: https://pubmed.ncbi.nlm.nih.gov/32816630/. - 593. U.S. Food & Drug Administration. Package Insert. bevacizumab injection, for intravenous use 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125085s340lbl.pdf. Accessed February 10, 2023. - 594. Folprecht G, Gruenberger T, Bechstein WO, et al. Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet Oncol 2010;11:38-47. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19942479. - 595. Folprecht G, Gruenberger T, Bechstein W, et al. Survival of patients with initially unresectable colorectal liver metastases treated with FOLFOX/cetuximab or FOLFIRI/cetuximab in a multidisciplinary concept (CELIM study). Ann Oncol 2014;25:1018-1025. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24585720. - 596. Ye LC, Liu TS, Ren L, et al. Randomized controlled trial of cetuximab plus chemotherapy for patients with KRAS wild-type unresectable colorectal liver-limited metastases. J Clin Oncol 2013;31:1931-1938. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23569301. - 597. Modest DP, Martens UM, Riera-Knorrenschild J, et al. FOLFOXIRI Plus Panitumumab As First-Line Treatment of RAS Wild-Type Metastatic Colorectal Cancer: The Randomized, Open-Label, Phase II VOLFI Study (AIO KRK0109). J Clin Oncol 2019;37:3401-3411. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31609637. - 598. Petrelli F, Barni S. Resectability and outcome with anti-EGFR agents in patients with KRAS wild-type colorectal liver-limited metastases: a meta-analysis. Int J Colorectal Dis 2012;27:997-1004. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22358385. - 599. Borelli B, Moretto R, Lonardi S, et al. TRIPLETE: a randomised phase III study of modified FOLFOXIRI plus panitumumab versus mFOLFOX6 plus panitumumab as initial therapy for patients with unresectable RAS and BRAF wild-type metastatic colorectal cancer. ESMO Open 2018;3:e000403. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30018814. - 600. Rossini D, Antoniotti C, Lonardi S, et al. Upfront modified fluorouracil, leucovorin, oxaliplatin, and irinotecan plus panitumumab versus fluorouracil, leucovorin, and oxaliplatin plus panitumumab for patients with RAS/BRAF wild-type metastatic colorectal cancer: The phase III TRIPLETE study by GONO. J Clin Oncol 2022;40:2878-2888. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35666229. - 601. Zhang J, Cai J, Deng Y, Wang H. Complete response in patients with locally advanced rectal cancer after neoadjuvant treatment with - nivolumab. Oncoimmunology 2019;8:e1663108. Available at: https://pubmed.ncbi.nlm.nih.gov/31741760/. - 602. Demisse R, Damle N, Kim E, et al. Neoadjuvant Immunotherapy-Based Systemic Treatment in MMR-Deficient or MSI-High Rectal Cancer: Case Series. J Natl Compr Canc Netw 2020;18:798-804. Available at: https://pubmed.ncbi.nlm.nih.gov/32634770/. - 603. Baimas-George M, Baker E, Kamionek M, et al. A Complete Pathological Response to Pembrolizumab following ex vivo Liver Resection in a Patient with Colorectal Liver Metastases. Chemotherapy 2018;63:90-94. Available at: https://pubmed.ncbi.nlm.nih.gov/29621772/. - 604. Ciliberto D, Prati U, Roveda L, et al. Role of systemic chemotherapy in the management of resected or resectable colorectal liver metastases: a systematic review and meta-analysis of randomized controlled trials. Oncol Rep 2012;27:1849-1856. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22446591. - 605. Wang ZM, Chen YY, Chen FF, et al. Peri-operative chemotherapy for patients with resectable colorectal hepatic metastasis: A meta-analysis. Eur J Surg Oncol 2015;41:1197-1203. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26094113. - 606. Araujo RL, Gonen M, Herman P. Chemotherapy for patients with colorectal liver metastases who underwent curative resection improves long-term outcomes: systematic review and meta-analysis. Ann Surg Oncol 2015;22:3070-3078. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25586244. - 607. Khoo E, O'Neill S, Brown E, et al. Systematic review of systemic adjuvant, neoadjuvant and perioperative chemotherapy for resectable colorectal-liver metastases. HPB (Oxford) 2016;18:485-493. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27317952. - 608. Brandi G, De Lorenzo S, Nannini M, et al.
Adjuvant chemotherapy for resected colorectal cancer metastases: Literature review and meta-analysis. World J Gastroenterol 2016;22:519-533. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26811604. - 609. Nordlinger B, Sorbye H, Glimelius B, et al. Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 2008;371:1007-1016. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18358928. - 610. Nordlinger B, Sorbye H, Glimelius B, et al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol 2013;14:1208-1215. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24120480. - 611. Nagayama S, Hasegawa S, Hida K, et al. Multi-institutional phase II study on the feasibility of liver resection following preoperative mFOLFOX6 therapy for resectable liver metastases from colorectal cancers. Int J Clin Oncol 2017;22:316-323. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27752787. - 612. Primrose J, Falk S, Finch-Jones M, et al. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis: the New EPOC randomised controlled trial. Lancet Oncol 2014;15:601-611. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24717919. - 613. Bridgewater JA, Pugh SA, Maishman T, et al. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis (New EPOC): long-term results of a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 2020;21:398-411. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32014119. - 614. Araujo R, Gonen M, Allen P, et al. Comparison between perioperative and postoperative chemotherapy after potentially curative hepatic resection for metastatic colorectal cancer. Ann Surg Oncol 2013;20:4312-4321. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23897009. - 615. Bilchik AJ, Poston G, Adam R, Choti MA. Prognostic variables for resection of colorectal cancer hepatic metastases: an evolving paradigm. J Clin Oncol 2008;26:5320-5321. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18936470. - 616. Leonard GD, Brenner B, Kemeny NE. Neoadjuvant chemotherapy before liver resection for patients with unresectable liver metastases from colorectal carcinoma. J Clin Oncol 2005;23:2038-2048. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15774795. - 617. van Vledder MG, de Jong MC, Pawlik TM, et al. Disappearing colorectal liver metastases after chemotherapy: should we be concerned? J Gastrointest Surg 2010;14:1691-1700. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20839072. - 618. Benoist S, Brouquet A, Penna C, et al. Complete response of colorectal liver metastases after chemotherapy: does it mean cure? J Clin Oncol 2006;24:3939-3945. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16921046. - 619. Bischof DA, Clary BM, Maithel SK, Pawlik TM. Surgical management of disappearing colorectal liver metastases. Br J Surg 2013;100:1414-1420. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24037559. - 620. Goldberg RM, Rothenberg ML, Van Cutsem E, et al. The continuum of care: a paradigm for the management of metastatic colorectal cancer. Oncologist 2007;12:38-50. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17227899. - 621. Ducreux M, Malka D, Mendiboure J, et al. Sequential versus combination chemotherapy for the treatment of advanced colorectal cancer (FFCD 2000-05): an open-label, randomised, phase 3 trial. Lancet Oncol 2011;12:1032-1044. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21903473. - 622. Koopman M, Antonini NF, Douma J, et al. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 2007;370:135-142. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17630036. - 623. Seymour MT, Maughan TS, Ledermann JA, et al. Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial. Lancet 2007;370:143-152. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17630037. - 624. Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004;22:229-237. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14657227. - 625. Grothey A, Sargent D, Goldberg RM, Schmoll H-J. Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 2004;22:1209-1214. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15051767. - 626. Sargent DJ, Kohne CH, Sanoff HK, et al. Pooled safety and efficacy analysis examining the effect of performance status on outcomes in nine first-line treatment trials using individual data from patients with metastatic colorectal cancer. J Clin Oncol 2009;27:1948-1955. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19255311. - 627. Inada R, Nagasaka T, Shimokawa M, et al. Phase 3 trial of sequential versus combination treatment in colorectal cancer: The C-cubed study. Eur J Cancer 2022;169:166-178. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35569283. - 628. Nielsen DL, Palshof JA, Larsen FO, et al. A systematic review of salvage therapy to patients with metastatic colorectal cancer previously treated with fluorouracil, oxaliplatin and irinotecan +/- targeted therapy. Cancer Treat Rev 2014;40:701-715. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24731471. - 629. Costa T, Nunez J, Felismino T, et al. REOX: Evaluation of the Efficacy of Retreatment With an Oxaliplatin-containing Regimen in Metastatic Colorectal Cancer: A Retrospective Single-center Study. Clin Colorectal Cancer 2017;16:316-323. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28392022. - 630. Besora S, Santos C, Izquierdo C, et al. Rechallenge with oxaliplatin and peripheral neuropathy in colorectal cancer patients. J Cancer Res Clin Oncol 2018;144:1793-1801. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29955956. 631. Tanioka H, Asano M, Yoshida R, et al. Cetuximab retreatment in patients with metastatic colorectal cancer who exhibited a clinical benefit in response to prior cetuximab: A retrospective study. Oncol Lett 2018;16:3674-3680. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30127977. - 632. Mauri G, Pizzutilo EG, Amatu A, et al. Retreatment with anti-EGFR monoclonal antibodies in metastatic colorectal cancer: Systematic review of different strategies. Cancer Treat Rev 2019;73:41-53. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30616224. - 633. Liu X, George GC, Tsimberidou AM, et al. Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response. BMC Cancer 2015;15:713. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26474549. - 634. Kajitani T, Makiyama A, Arita S, et al. Anti-Epidermal Growth Factor Receptor Antibody Readministration in Chemorefractory Metastatic Colorectal Cancer. Anticancer Res 2017;37:6459-6468. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29061833. - 635. Cremolini C, Rossini D, Dell'Aquila E, et al. Rechallenge for Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer With Acquired Resistance to First-line Cetuximab and Irinotecan: A Phase 2 Single-Arm Clinical Trial. JAMA Oncol 2019;5:343-350. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30476968. - 636. Simkens LH, van Tinteren H, May A, et al. Maintenance treatment with capecitabine and bevacizumab in metastatic colorectal cancer (CAIRO3): a phase 3 randomised controlled trial of the Dutch Colorectal Cancer Group. Lancet 2015;385:1843-1852. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25862517. - 637. Goey KKH, Elias SG, van Tinteren H, et al. Maintenance treatment with capecitabine and bevacizumab versus observation in metastatic colorectal cancer: updated results and molecular subgroup analyses of the phase 3 CAIRO3 study. Ann Oncol 2017;28:2128-2134. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28911067. 638. Hegewisch-Becker S, Graeven U, Lerchenmuller CA, et al. Maintenance strategies after first-line oxaliplatin plus fluoropyrimidine plus bevacizumab for patients with metastatic colorectal cancer (AlO 0207): a randomised, non-inferiority, open-label, phase 3 trial. Lancet Oncol 2015;16:1355-1369. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26361971. - 639. Aparicio T, Ghiringhelli F, Boige V, et al. Bevacizumab Maintenance Versus No Maintenance During Chemotherapy-Free Intervals in Metastatic Colorectal Cancer: A Randomized Phase III Trial (PRODIGE 9). J Clin Oncol 2018;36:674-681. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29346040. - 640. Koeberle D, Betticher DC, von Moos R, et al. Bevacizumab continuation versus no continuation after first-line chemotherapy plus bevacizumab in patients with metastatic colorectal cancer: a randomized phase III non-inferiority trial (SAKK 41/06). Ann Oncol 2015;26:709-714. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25605741. - 641. Tournigand C, Chibaudel B, Samson B, et al. Bevacizumab with or without erlotinib as maintenance therapy in patients with metastatic colorectal cancer (GERCOR DREAM; OPTIMOX3): a randomised, openlabel, phase 3 trial. Lancet Oncol 2015;16:1493-1505. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26474518. - 642. Hagman H, Frodin JE, Berglund A, et al. A randomized study of KRAS-guided maintenance therapy with bevacizumab, erlotinib or metronomic capecitabine after first-line induction treatment of metastatic colorectal cancer: the Nordic ACT2 trial. Ann Oncol 2016;27:140-147. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26483047. - 643. Xu W, Gong Y, Kuang M, et al. Survival benefit and safety of bevacizumab in combination with erlotinib as maintenance therapy in patients with metastatic colorectal cancer: a meta-analysis. Clin Drug Investig 2016;37:155-165. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27665469. - 644. Luo HY, Li YH, Wang W, et al. Single-agent capecitabine as maintenance therapy after induction of XELOX (or FOLFOX) in first-line treatment of metastatic colorectal cancer: randomized clinical trial of efficacy and safety. Ann Oncol 2016;27:1074-1081. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26940686. - 645. Sonbol MB, Mountjoy LJ, Firwana B, et al. The Role of Maintenance Strategies in Metastatic Colorectal Cancer: A Systematic Review and Network Meta-analysis of Randomized Clinical Trials. JAMA Oncol 2020;6:e194489. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31855256. - 646. U. S. Food & Drug Administration. Package Insert. bevacizumabawwb injection, for intravenous use. 2021. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761028s006lbl.pdf. Accessed February 13, 2023. - 647. U. S. Food & Drug Administration. Package Insert. bevacizumab-bvzr injection for intravenous use. 2021. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761099s0061 bl.pdf. Accessed February 10, 2023. - 648. U.S. Food & Drug Administration. Package Insert. trastuzumab-pkrb for injection, for intravenous use. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761091s001s 002lbl.pdf. Accessed February 13, 2023. - 649. U.S. Food & Drug Administration. Package Insert. trastuzumab-anns for injection, for intravenous use. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761073Orig1s000lbl.pdf. Accessed February 13, 2023. - 650. U.S. Food & Drug Administration. Package Insert. trastuzumab-dkst for injection, for intravenous use. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761074s004lbl.pdf. Accessed February 13, 2023. 651. U.S. Food & Drug Administration. Package Insert. trastuzumab-dttb for injection, for intravenous use. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761100Orig1 s005Lbl.pdf. Accessed February 13, 2023. - 652. U.S. Food & Drug Administration. Package Insert. trastuzumab-qyyp for injection, for intravenous use. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761081s000lbl.pdf. Accessed February 13, 2023. - 653. U.S. Food & Drug Administration. Package insert. Bevacizumab-adcd injection, for intravenous use. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761268Orig1s000Correctedlbl.pdf. Accessed March 13, 2023. - 654. Parikh AR, Leshchiner I, Elagina L, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med 2019;25:1415-1421. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31501609. - 655. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:1626-1634. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18316791. - 656. Baselga J, Rosen N. Determinants of RASistance to anti-epidermal growth factor receptor agents. J Clin Oncol 2008;26:1582-1584. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18316790. - 657. Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009;27:663-671. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19114683. - 658. De Roock W, Piessevaux H, De Schutter J, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 2008;19:508-515. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17998284. 659. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008;359:1757-1765. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18946061. - 660. Khambata-Ford S, Garrett CR, Meropol NJ, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 2007;25:3230-3237. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17664471. - 661. Lievre A, Bachet J-B, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008;26:374-379. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18202412. - 662. Tejpar S, Celik I, Schlichting M, et al. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 2012;30:3570-3577. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22734028. 663. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360:1408-1417. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19339720. 664. Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:1023-1034. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24024839. 665. Sorich MJ, Wiese MD, Rowland A, et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol 2015;26:13-21. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25115304. - 666. Allegra CJ, Rumble RB, Hamilton SR, et al. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015. J Clin Oncol 2016;34:179-185. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26438111. - 667. Jones RP, Sutton PA, Evans JP, et al. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br J Cancer 2017;116:923-929. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28208157. - 668. Neumann J, Zeindl-Eberhart E, Kirchner T, Jung A. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract 2009;205:858-862. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19679400. - 669. Schirripa M, Nappo F, Cremolini C, et al. KRAS G12C Metastatic Colorectal Cancer: Specific Features of a New Emerging Target Population. Clin Colorectal Cancer 2020;19:219-225. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32605718. - 670. Yoon HH, Tougeron D, Shi Q, et al. KRAS codon 12 and 13 mutations in relation to disease-free survival in BRAF-wild-type stage III colon cancers from an adjuvant chemotherapy trial (N0147 alliance). Clin Cancer Res 2014;20:3033-3043. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24687927. - 671. Henry JT, Coker O, Chowdhury S, et al. Comprehensive Clinical and Molecular Characterization of KRAS (G12C)-Mutant Colorectal Cancer. JCO Precis Oncol 2021;5. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34250391. -
672. Modest DP, Ricard I, Heinemann V, et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol 2016;27:1746-1753. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27358379. - 673. Price TJ, Bruhn MA, Lee CK, et al. Correlation of extended RAS and PIK3CA gene mutation status with outcomes from the phase III AGITG MAX STUDY involving capecitabine alone or in combination with bevacizumab plus or minus mitomycin C in advanced colorectal cancer. Br J Cancer 2015;112:963-970. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25742472. - 674. Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, openlabel, phase 3 trial. Lancet Oncol 2014;15:1065-1075. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25088940. - 675. U.S. Food & Drug Administration. Package Insert. Panitumumab injection for intravenous use. 2021. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf. Accessed February 10, 2023. - 676. De Roock W, Jonker DJ, Di Nicolantonio F, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 2010;304:1812-1820. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20978259. - 677. Peeters M, Douillard JY, Van Cutsem E, et al. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol 2013;31:759-765. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23182985. - 678. Schirripa M, Loupakis F, Lonardi S, et al. Phase II study of single-agent cetuximab in KRAS G13D mutant metastatic colorectal cancer. Ann Oncol 2015;26:2503. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26371285. - 679. Segelov E, Thavaneswaran S, Waring PM, et al. Response to cetuximab with or without irinotecan in patients with refractory metastatic colorectal cancer harboring the KRAS G13D mutation: Australasian Gastro-Intestinal Trials Group ICECREAM study. J Clin Oncol 2016;34:2258-2264. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27114605. 680. Rowland A, Dias MM, Wiese MD, et al. Meta-analysis comparing the efficacy of anti-EGFR monoclonal antibody therapy between KRAS G13D and other KRAS mutant metastatic colorectal cancer tumours. Eur J Cancer 2016;55:122-130. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26812186. 681. Artale S, Sartore-Bianchi A, Veronese SM, et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J Clin Oncol 2008;26:4217-4219. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18757341. - 682. Etienne-Grimaldi M-C, Formento J-L, Francoual M, et al. K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res 2008;14:4830-4835. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18676755. - 683. Knijn N, Mekenkamp LJ, Klomp M, et al. KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br J Cancer 2011;104:1020-1026. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21364579. - 684. Wang HL, Lopategui J, Amin MB, Patterson SD. KRAS mutation testing in human cancers: the pathologist's role in the era of personalized medicine. Adv Anat Pathol 2010;17:23-32. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20032635. - 685. Monzon FA, Ogino S, Hammond MEH, et al. The role of KRAS mutation testing in the management of patients with metastatic colorectal cancer. Arch Pathol Lab Med 2009;133:1600-1606. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19792050. - 686. Tol J, Nagtegaal ID, Punt CJA. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009;361:98-99. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19571295. - 687. Van Cutsem E, Kohne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011;29:2011-2019. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21502544. - 688. Maughan TS, Adams RA, Smith CG, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 2011;377:2103-2114. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21641636. - 689. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-954. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12068308. - 690. Ikenoue T, Hikiba Y, Kanai F, et al. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res 2003;63:8132-8137. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14678966. - 691. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004;116:855-867. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15035987. - 692. Bokemeyer C, Cutsem EV, Rougier P, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: Pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012;48:1466-1475. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22446022. - 693. Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:5705-5712. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19001320. - 694. Laurent-Puig P, Cayre A, Manceau G, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 2009;27:5924-5930. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19884556. 695. Loupakis F, Ruzzo A, Cremolini C, et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 2009;101:715-721. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19603018. - 696. De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753-762. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20619739. - 697. Seymour MT, Brown SR, Middleton G, et al. Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol 2013;14:749-759. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23725851. - 698. Pietrantonio F, Petrelli F, Coinu A, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 2015;51:587-594. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25673558. - 699. Rowland A, Dias MM, Wiese MD, et al. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer 2015;112:1888-1894. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25989278. - 700. Chen D, Huang JF, Liu K, et al. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS One 2014;9:e90607. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24594804. - 701. Price TJ, Hardingham JE, Lee CK, et al. Impact of KRAS and BRAF gene mutation status on outcomes from the phase III AGITG MAX trial of capecitabine alone or in combination with bevacizumab and mitomycin in advanced colorectal cancer. J Clin Oncol 2011;29:2675-2682. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21646616. - 702. Safaee Ardekani G, Jafarnejad SM, Tan L, et al. The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS One 2012;7:e47054. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23056577. - 703. Samowitz WS, Sweeney C, Herrick J, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 2005;65:6063-6069. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16024606. - 704. Saridaki Z, Papadatos-Pastos D, Tzardi M, et al. BRAF mutations, microsatellite instability status and cyclin D1 expression predict metastatic colorectal patients' outcome. Br J Cancer 2010;102:1762-1768. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20485284. - 705. Xu Q, Xu AT, Zhu MM, et al. Predictive and prognostic roles of BRAF mutation in patients with metastatic colorectal cancer treated with antiepidermal growth factor receptor monoclonal antibodies: A meta-analysis. J Dig Dis 2013;14:409-416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23615046. - 706. Sinicrope FA, Shi Q, Allegra CJ, et al. Association of DNA mismatch repair and mutations in BRAF and KRAS with survival after recurrence in stage III colon cancers: A secondary analysis of 2 randomized clinical trials. JAMA Oncol 2017;3:472-480. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28006055. - 707. Clancy C, Burke JP, Kalady MF, Coffey JC. BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. Colorectal Dis 2013;15:e711-718. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24112392. - 708. Santini D, Spoto C, Loupakis F, et al. High concordance of BRAF status between primary colorectal tumours and related metastatic sites: implications for clinical practice. Ann Oncol 2010;21:1565. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20573852. 709. Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17:738-746. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27108243. - 710. Sartore-Bianchi A, Amatu A, Porcu L, et al. HER2 Positivity Predicts Unresponsiveness to EGFR-Targeted Treatment in Metastatic Colorectal Cancer. Oncologist 2019;24:1395-1402. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30952821. - 711. Valtorta E, Martino C, Sartore-Bianchi A, et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod Pathol 2015;28:1481-1491. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26449765. - 712. Hainsworth JD, Meric-Bernstam F, Swanton C, et al. Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results From MyPathway, an Open-Label, Phase IIa Multiple Basket Study. J Clin Oncol 2018;36:536-542. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29320312. - 713. Wu SW, Ma CC, Li WH. Does overexpression of HER-2 correlate with clinicopathological characteristics and prognosis in colorectal cancer? Evidence from a meta-analysis. Diagn Pathol 2015;10:144. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26276145. - 714. Martin V, Landi L, Molinari F, et al. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br J Cancer 2013;108:668-675. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23348520. - 715. Raghav K, Loree JM, Morris JS, et al. Validation of HER2 Amplification as a Predictive Biomarker for Anti-Epidermal Growth Factor Receptor Antibody Therapy in Metastatic Colorectal Cancer. JCO Precision Oncology 2019:1-13. Available at: https://ascopubs.org/doi/abs/10.1200/PO.18.00226. - 716. Lochhead P, Kuchiba A, Imamura Y, et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst 2013;105:1151-1156. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23878352. - 717. Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res 2014;20:5322-5330. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25139339. - 718. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443-2454. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22658127. 719. Drilon A, Laetsch TW, Kummar S, et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 2018;378:731-739. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29466156. - 720. Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019;32:147-153. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30171197. - 721. Okamura R, Boichard A, Kato S, et al. Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. JCO Precis Oncol 2018;2018. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30637364. - 722. Cocco E, Benhamida J, Middha S, et al. Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS Are Enriched for Targetable Kinase Fusions. Cancer Res 2019;79:1047-1053. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30643016. 723. Pietrantonio F, Di Nicolantonio F, Schrock AB, et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J Natl Cancer Inst 2017;109. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29370427. 724. Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2018;15:151-167. Available at: $\underline{https://www.ncbi.nlm.nih.gov/pubmed/29134959}.$ 725. Subbiah V, Wolf J, Konda B, et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. Lancet Oncol 2022;23:1261-1273. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36108661. 726. Pietrantonio F, Di Nicolantonio F, Schrock AB, et al. RET fusions in a small subset of advanced colorectal cancers at risk of being neglected. Ann Oncol 2018;29:1394-1401. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29538669. 727. Fancello L, Gandini S, Pelicci PG, Mazzarella L. Tumor mutational burden quantification from targeted gene panels: major advancements and challenges. J Immunother Cancer 2019;7:183. Available at: https://pubmed.ncbi.nlm.nih.gov/31307554/. 728. U.S. Food & Drug Administration. Package Insert. pembrolizumab injection for intravenous use. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125514s1331 bl.pdf. Accessed February 10, 2023. 729. Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 2020;21:1353-1365. Available at: https://pubmed.ncbi.nlm.nih.gov/32919526/. 730. Meiri E, Garrett-Mayer E, Halabi S, et al. Pembrolizumab (P) in patients (Pts) with colorectal cancer (CRC) with high tumor mutational burden (HTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study [abstract]. Journal of Clinical Oncology 2020;38:133-133. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.4_suppl.133. 731. Vaccaro GM, Rothe M, Mangat PK, et al. Nivolumab plus ipilimumab (N+I) in patients (pts) with colorectal cancer (CRC) with high tumor mutational burden (hTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study [abstract]. Journal of Clinical Oncology 2022;40:107-107. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.4 suppl.107. 732. Mattison LK, Soong R, Diasio RB. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics. Pharmacogenomics 2002;3:485-492. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12164772. 733. Amstutz U, Henricks LM, Offer SM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther 2018;103:210-216. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29152729. 734. Lee AM, Shi Q, Pavey E, et al. DPYD variants as predictors of 5-fluorouracil toxicity in adjuvant colon cancer treatment (NCCTG N0147). J Natl Cancer Inst 2014;106. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25381393. 735. Morel A, Boisdron-Celle M, Fey L, et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 2006;5:2895-2904. Available at: https://www.ncbi.nlm.nih.gov/pubmed/17121937. 736. Meulendijks D, Henricks LM, Sonke GS, et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol 2015;16:1639-1650. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26603945. - 737. Terrazzino S, Cargnin S, Del Re M, et al. DPYD IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta-analysis. Pharmacogenomics 2013;14:1255-1272. Available at:
https://www.ncbi.nlm.nih.gov/pubmed/23930673. - 738. Lunenburg C, Henricks LM, Guchelaar HJ, et al. Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: Ready for prime time. Eur J Cancer 2016;54:40-48. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26716401. - 739. Deenen MJ, Cats A, Severens JL, et al. Reply to T. Magnes et al. J Clin Oncol 2016;34:2434-2435. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27161961. - 740. Reizine NM, Danahey K, Truong TM, et al. Clinically actionable genotypes for anticancer prescribing among >1500 patients with pharmacogenomic testing. Cancer 2022;128:1649-1657. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35090043. - 741. Sharma BB, Rai K, Blunt H, et al. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncologist 2021;26:1008-1016. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34506675. - 742. Henricks LM, Lunenburg C, de Man FM, et al. A cost analysis of upfront DPYD genotype-guided dose individualisation in fluoropyrimidine-based anticancer therapy. Eur J Cancer 2019;107:60-67. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30544060. - 743. Henricks LM, Lunenburg C, de Man FM, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol 2018;19:1459-1467. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30348537. - 744. Deenen MJ, Meulendijks D, Cats A, et al. Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: a safety and cost analysis. J Clin Oncol 2016;34:227-234. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26573078. - 745. Clinical Pharmacogenetics Implementation Consortium. CPIC Guideline for Fluoropyrimidines and DPYD. 2020. Available at: https://cpicpgx.org/guidelines/guideline-for-fluoropyrimidines-and-dpyd/. Accessed December 13, 2022. - 746. Haller DG, Cassidy J, Clarke SJ, et al. Potential regional differences for the tolerability profiles of fluoropyrimidines. J Clin Oncol 2008;26:2118-2123. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18445840. - 747. U.S. Food & Drug Administration. Package Insert. uridine triacetate oral granules. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208169s0031 bl.pdf. Accessed February 13, 2023. - 748. Ma WW, Saif MW, El-Rayes BF, et al. Emergency use of uridine triacetate for the prevention and treatment of life-threatening 5-fluorouracil and capecitabine toxicity. Cancer 2017;123:345-356. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27622829. - 749. Ison G, Beaver JA, McGuinn WD, Jr., et al. FDA approval: Uridine triacetate for the treatment of patients following fluorouracil or capecitabine overdose or exhibiting early-onset severe toxicities following administration of these drugs. Clin Cancer Res 2016;22:4545-4549. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27401247. - 750. Fuchs CS, Marshall J, Barrueco J. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: updated results from the BICC-C study. J Clin Oncol 2008;26:689-690. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18235136. - 751. Goldberg RM, Sargent DJ, Morton RF, et al. Randomized controlled trial of reduced-dose bolus fluorouracil plus leucovorin and irinotecan or infused fluorouracil plus leucovorin and oxaliplatin in patients with previously untreated metastatic colorectal cancer: a North American Intergroup Trial. J Clin Oncol 2006;24:3347-3353. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16849748. 752. Van Cutsem E, Twelves C, Cassidy J, et al. Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 2001;19:4097-4106. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11689577. 753. Kohne CH, De Greve J, Hartmann JT, et al. Irinotecan combined with infusional 5-fluorouracil/folinic acid or capecitabine plus celecoxib or placebo in the first-line treatment of patients with metastatic colorectal cancer. EORTC study 40015. Ann Oncol 2008;19:920-926. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18065406. 754. Garcia-Alfonso P, Munoz-Martin AJ, Alvarez-Suarez S, et al. Bevacizumab in combination with biweekly capecitabine and irinotecan, as first-line treatment for patients with metastatic colorectal cancer. Br J Cancer 2010;103:1524-1528. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20978503. 755. Garcia-Alfonso P, Chaves M, Munoz A, et al. Capecitabine and irinotecan with bevacizumab 2-weekly for metastatic colorectal cancer: the phase II AVAXIRI study. BMC Cancer 2015;15:327. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25925749. 756. Ducreux M, Adenis A, Pignon JP, et al. Efficacy and safety of bevacizumab-based combination regimens in patients with previously untreated metastatic colorectal cancer: final results from a randomised phase II study of bevacizumab plus 5-fluorouracil, leucovorin plus irinotecan versus bevacizumab plus capecitabine plus irinotecan (FNCLCC ACCORD 13/0503 study). Eur J Cancer 2013;49:1236-1245. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23352604. 757. Pectasides D, Papaxoinis G, Kalogeras K, et al. XELIRI-bevacizumab versus FOLFIRI-bevacizumab as first-line treatment in patients with metastatic colorectal cancer: a Hellenic Cooperative Oncology Group phase III trial with collateral biomarker analysis. BMC Cancer 2012;12:271. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22748098. 758. Schmiegel W, Reinacher-Schick A, Arnold D, et al. Capecitabine/irinotecan or capecitabine/oxaliplatin in combination with bevacizumab is effective and safe as first-line therapy for metastatic colorectal cancer: a randomized phase II study of the AIO colorectal study group. Ann Oncol 2013;24:1580-1587. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23463625. 759. Hoff PM, Hochhaus A, Pestalozzi BC, et al. Cediranib plus FOLFOX/CAPOX versus placebo plus FOLFOX/CAPOX in patients with previously untreated metastatic colorectal cancer: a randomized, double-blind, phase III study (HORIZON II). J Clin Oncol 2012;30:3596-3603. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22965965. 760. Siu LL, Shapiro JD, Jonker DJ, et al. Phase III randomized, placebocontrolled study of cetuximab plus brivanib alaninate versus cetuximab plus placebo in patients with metastatic, chemotherapy-refractory, wild-type K-RAS colorectal carcinoma: the NCIC clinical trials group and AGITG CO.20 trial. J Clin Oncol 2013;31:2477-2484. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23690424. 761. Carrato A, Swieboda-Sadlej A, Staszewska-Skurczynska M, et al. Fluorouracil, leucovorin, and irinotecan plus either sunitinib or placebo in metastatic colorectal cancer: a randomized, phase III trial. J Clin Oncol 2013;31:1341-1347. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23358972. 762. Johnsson A, Hagman H, Frodin JE, et al. A randomized phase III trial on maintenance treatment with bevacizumab alone or in combination with erlotinib after chemotherapy and bevacizumab in metastatic colorectal cancer: the Nordic ACT Trial. Ann Oncol 2013;24:2335-2341. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23788755. 763. Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2019;20:849-861. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31003911. 764. Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009;27:672-680. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19114685. 765. Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009;360:563-572. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19196673. 766. Hochster HS, Hart LL, Ramanathan RK, et al. Safety and efficacy of oxaliplatin and fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer: results of the TREE Study. J Clin Oncol 2008;26:3523-3529. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18640933. 767. Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010;28:4697-4705. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20921465. 768. Venook AP, Niedzwiecki D, Lenz HJ, et al. Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial. Jama 2017;317:2392-2401. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28632865. 769. Buchler T, Pavlik T, Melichar B, et al. Bevacizumab with 5-fluorouracil, leucovorin, and oxaliplatin versus bevacizumab with capecitabine and oxaliplatin for metastatic colorectal carcinoma: results of a large registry-based cohort analysis. BMC Cancer 2014;14:323. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24884897. 770. Kidwell KM, Yothers G, Ganz PA, et al. Long-term neurotoxicity effects of oxaliplatin added to fluorouracil and leucovorin as adjuvant therapy for colon cancer: results from National Surgical Adjuvant Breast and Bowel Project trials C-07 and LTS-01. Cancer 2012;118:5614-5622. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22569841. 771. Tournigand C, Cervantes A, Figer A, et al. OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-Go fashion in advanced colorectal cancer--a GERCOR study. J Clin Oncol 2006;24:394-400. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16421419. 772. Seymour M. Conceptual approaches to metastatic disease. Ann Oncol 2012;23 Suppl 10:x77-80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22987997. 773. Berry SR, Cosby R, Asmis T, et al. Continuous versus intermittent chemotherapy strategies in metastatic colorectal cancer: a systematic review and meta-analysis. Ann Oncol 2014;26:477-485. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25057174. 774. Chibaudel B, Maindrault-Goebel F, Lledo G, et al. Can chemotherapy be discontinued in unresectable metastatic colorectal cancer? The GERCOR OPTIMOX2 Study. J Clin Oncol 2009;27:5727-5733. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19786657. 775. Hochster HS, Grothey A, Hart L, et al. Improved time to treatment failure with an intermittent oxaliplatin strategy: results of CONcePT. Ann Oncol 2014;25:1172-1178. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24608198. 776. Gamelin L, Boisdron-Celle M, Delva R, et al. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin Cancer Res 2004;10:4055-4061. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15217938. 777. Gamelin L, Boisdron-Celle M, Morel A, et al. Oxaliplatin-related neurotoxicity: interest of calcium-magnesium infusion and no impact on its efficacy. J Clin Oncol 2008;26:1188-1189; author reply 1189-1190. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18309961. 778. Grothey A, Nikcevich DA, Sloan JA, et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: NCCTG N04C7. J Clin Oncol 2011;29:421-427. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21189381. 779. Hochster HS, Grothey A, Childs BH. Use of calcium and magnesium salts to reduce oxaliplatin-related neurotoxicity. J Clin Oncol 2007;25:4028-4029. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17664456. 780. Knijn N, Tol J, Koopman M, et al. The effect of prophylactic calcium and magnesium infusions on the incidence of neurotoxicity and clinical outcome of oxaliplatin-based systemic treatment in advanced colorectal cancer patients. Eur J Cancer 2010;47:369-374. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21067912. 781. Kurniali PC, Luo LG, Weitberg AB. Role of calcium/ magnesium infusion in oxaliplatin-based chemotherapy for colorectal cancer patients. Oncology (Williston Park) 2010;24:289-292. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20394142. 782. Wen F, Zhou Y, Wang W, et al. Ca/Mg infusions for the prevention of oxaliplatin-related neurotoxicity in patients with colorectal cancer: a meta-analysis. Ann Oncol 2013;24:171-178. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22898039. 783. Wu Z, Ouyang J, He Z, Zhang S. Infusion of calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in colorectal cancer: A systematic review and meta-analysis. Eur J Cancer 2012;48:1791-1798. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22542974. 784. Loprinzi CL, Qin R, Dakhil SR, et al. Phase III randomized, placebocontrolled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol 2014;32:997-1005. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24297951. 785. Cassidy J, Clarke S, Diaz-Rubio E, et al. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol 2008;26:2006-2012. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18421053. 786. Cassidy J, Tabernero J, Twelves C, et al. XELOX (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J Clin Oncol 2004;22:2084-2091. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15169795. 787. Cassidy J, Clarke S, Diaz-Rubio E, et al. XELOX vs FOLFOX-4 as first-line therapy for metastatic colorectal cancer: NO16966 updated results. Br J Cancer 2011;105:58-64. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21673685. 788. Ducreux M, Bennouna J, Hebbar M, et al. Capecitabine plus oxaliplatin (XELOX) versus 5-fluorouracil/leucovorin plus oxaliplatin (FOLFOX-6) as first-line treatment for metastatic colorectal cancer. Int J Cancer 2011;128:682-690. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20473862. 789. Porschen R, Arkenau H-T, Kubicka S, et al. Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO Colorectal Study Group. J Clin Oncol 2007;25:4217-4223. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17548840. 790. Guo Y, Xiong BH, Zhang T, et al. XELOX vs. FOLFOX in metastatic colorectal cancer: An updated meta-analysis. Cancer Invest 2016;34:94-104. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26864862. 791. Zhang C, Wang J, Gu H, et al. Capecitabine plus oxaliplatin compared with 5-fluorouracil plus oxaliplatin in metastatic colorectal cancer: Meta-analysis of randomized controlled trials. Oncol Lett 2012;3:831-838. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22741002. 792. U.S. Food & Drug Administration. Package Insert. oxaliplatin injection for intravenous use. 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021759s023lbl.pdf. Accessed February 13, 2023. 793. Yalcin S, Uslu R, Dane F, et al. Bevacizumab + capecitabine as maintenance therapy after initial bevacizumab + XELOX treatment in previously untreated patients with metastatic colorectal cancer: phase III 'Stop and Go' study results--a Turkish Oncology Group Trial. Oncology 2013;85:328-335. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24247559. 794. Adams RA, Fisher DJ, Graham J, et al. Capecitabine versus active monitoring in stable or responding metastatic colorectal cancer after 16 weeks of first-line therapy: Results of the randomized FOCUS4-N trial. J Clin Oncol 2021;39:3693-3704. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34516759. 795. U.S. Food & Drug Administration. Package Insert. capecitabine tablets for oral use. 2021. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/020896s043lbl.pdf. Accessed February 10, 2023. 796. Schmoll H-J, Arnold D. Update on capecitabine in colorectal cancer. Oncologist 2006;11:1003-1009. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17030642. 797. Hofheinz RD, Heinemann V, von Weikersthal LF, et al. Capecitabine-associated hand-foot-skin reaction is an independent clinical predictor of improved survival in patients with colorectal cancer. Br J Cancer 2012;107:1678-1683. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23033005. 798. Colucci G, Gebbia V, Paoletti G, et al. Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J Clin Oncol 2005;23:4866-4875. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15939922. 799. Aparicio T, Lavau-Denes S, Phelip JM, et al. Randomized phase III
trial in elderly patients comparing LV5FU2 with or without irinotecan for first-line treatment of metastatic colorectal cancer (FFCD 2001-02). Ann Oncol 2016;27:121-127. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26487578. 800. Package Insert. Irinotecan Injection for intravenous infusion. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/020571Orig1s053lbl.pdf. Accessed February 10, 2023. 801. Innocenti F, Undevia SD, Iyer L, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004;22:1382-1388. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15007088. 802. Liu X, Cheng D, Kuang Q, et al. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J 2014;14:120-129. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23529007. 803. O'Dwyer PJ, Catalano RB. Uridine diphosphate glucuronosyltransferase (UGT) 1A1 and irinotecan: practical pharmacogenomics arrives in cancer therapy. J Clin Oncol 2006;24:4534-4538. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17008691. 804. Innocenti F, Schilsky RL, Ramirez J, et al. Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 2014;32:2328-2334. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24958824. 805. Sobrero A, Ackland S, Clarke S, et al. Phase IV study of bevacizumab in combination with infusional fluorouracil, leucovorin and irinotecan (FOLFIRI) in first-line metastatic colorectal cancer. Oncology 2009;77:113-119. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19628950. 806. Yamazaki K, Nagase M, Tamagawa H, et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann Oncol 2016;27:1539-1546. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27177863. 807. Kohne CH, Hofheinz R, Mineur L, et al. First-line panitumumab plus irinotecan/5-fluorouracil/leucovorin treatment in patients with metastatic colorectal cancer. J Cancer Res Clin Oncol 2012:138:65-72. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21960318. 808. Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 2010;28:4706-4713. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20921462. 809. Hurwitz HI, Fehrenbacher L, Hainsworth JD, et al. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for firstline metastatic colorectal cancer. J Clin Oncol 2005;23:3502-3508. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15908660. 810. Kabbinavar FF, Hambleton J, Mass RD, et al. Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 2005;23:3706-3712. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15867200. 811. Van Cutsem E, Hoff PM, Harper P, et al. Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br J Cancer 2004:90:1190-1197. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15026800. 812. Mitry E, Fields ALA, Bleiberg H, et al. Adjuvant chemotherapy after potentially curative resection of metastases from colorectal cancer: a pooled analysis of two randomized trials. J Clin Oncol 2008;26:4906-4911. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18794541. 813. Cunningham D, Lang I, Marcuello E, et al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised phase 3 trial. Lancet Oncol 2013;14:1077-1085. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24028813. 814. Loupakis F, Cremolini C, Masi G, et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 2014:371:1609-1618. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25337750. 815. Cremolini C, Loupakis F, Antoniotti C, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol 2015;16:1306-1315. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26338525. 816. Cremolini C, Antoniotti C, Rossini D, et al. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): a multicentre, openlabel, phase 3, randomised, controlled trial. Lancet Oncol 2020;21:497-507. Available at: https://pubmed.ncbi.nlm.nih.gov/32164906/. 817. Gruenberger T, Bridgewater J, Chau I, et al. Bevacizumab plus mFOLFOX-6 or FOLFOXIRI in patients with initially unresectable liver metastases from colorectal cancer: the OLIVIA multinational randomised phase II trial. Ann Oncol 2015;26:702-708. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25538173. 818. Hurwitz HI. Tan BR. Reeves JA. et al. Phase II Randomized Trial of Sequential or Concurrent FOLFOXIRI-Bevacizumab Versus FOLFOX-Bevacizumab for Metastatic Colorectal Cancer (STEAM). Oncologist 2019;24:921-932. Available at: https://pubmed.ncbi.nlm.nih.gov/30552157/. 819. Rossini D, Lonardi S, Antoniotti C, et al. Treatments after progression to first-line FOLFOXIRI and bevacizumab in metastatic colorectal cancer: a pooled analysis of TRIBE and TRIBE2 studies by GONO. Br J Cancer 2021;124:183-190. Available at: https://pubmed.ncbi.nlm.nih.gov/33024268/. 820. Antoniotti C, Germani MM, Rossini D, et al. FOLFOXIRI and bevacizumab in patients with early-onset metastatic colorectal cancer. A pooled analysis of TRIBE and TRIBE2 studies. Eur J Cancer 2022;167:23-31. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35366570. - 821. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003;21:60-65. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/12506171. - 822. Kabbinavar FF, Schulz J, McCleod M, et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 2005;23:3697-3705. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15738537. - 823. Petrelli F, Borgonovo K, Cabiddu M, et al. FOLFIRI-bevacizumab as first-line chemotherapy in 3500 patients with advanced colorectal cancer: a pooled analysis of 29 published trials. Clin Colorectal Cancer 2013;12:145-151. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23763824. - 824. Hurwitz HI, Bekaii-Saab TS, Bendell JC, et al. Safety and effectiveness of bevacizumab treatment for metastatic colorectal cancer: final results from the Avastin((R)) Registry Investigation of Effectiveness and Safety (ARIES) observational cohort study. Clin Oncol (R Coll Radiol) 2014;26:323-332. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/24686090. - 825. Fourrier-Reglat A, Smith D, Rouyer M, et al. Survival outcomes of bevacizumab in first-line metastatic colorectal cancer in a real-life setting: results of the ETNA cohort. Target Oncol 2013;9:311-319. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24307007. - 826. Botrel TE, Clark LG, Paladini L, Clark OA. Efficacy and safety of bevacizumab plus chemotherapy compared to chemotherapy alone in previously untreated advanced or metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2016;16:677. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27558497. - 827. Cao Y, Tan A, Gao F, et al. A meta-analysis of randomized controlled trials comparing chemotherapy plus bevacizumab with chemotherapy alone in metastatic colorectal cancer. Int J Colorectal Dis 2009;24:677-685. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19184059. - 828. Hu W, Xu W, Liao X, He H. Bevacizumab in combination with first-line chemotherapy in patients with metastatic colorectal cancer: a meta-analysis. Minerva Chir 2015;70:451-458. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26013763. - 829. Hurwitz HI, Tebbutt NC, Kabbinavar F, et al. Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist 2013;18:1004-1012. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23881988. - 830. Loupakis F, Bria E, Vaccaro V, et al. Magnitude of benefit of the addition of bevacizumab to first-line chemotherapy for metastatic colorectal cancer: meta-analysis of randomized clinical trials. J Exp Clin Cancer Res 2010;29:58. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20504361. - 831. Lv C, Wu S, Zheng D, et al. The efficacy of additional bevacizumab to cytotoxic chemotherapy regimens for the treatment of colorectal cancer: an updated meta-analysis for randomized trials. Cancer Biother
Radiopharm 2013;28:501-509. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23768086. - 832. Qu CY, Zheng Y, Zhou M, et al. Value of bevacizumab in treatment of colorectal cancer: A meta-analysis. World J Gastroenterol 2015;21:5072-5080. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25945023. - 833. Welch S, Spithoff K, Rumble RB, Maroun J. Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer: a systematic review. Ann Oncol 2010;21:1152-1162. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19942597. - 834. Zhang G, Zhou X, Lin C. Efficacy of chemotherapy plus bevacizumab as first-line therapy in patients with metastatic colorectal cancer: a meta-analysis and up-date. Int J Clin Exp Med 2015;8:1434-1445. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25785152. - 835. Macedo LT, da Costa Lima AB, Sasse AD. Addition of bevacizumab to first-line chemotherapy in advanced colorectal cancer: a systematic review and meta-analysis, with emphasis on chemotherapy subgroups. BMC Cancer 2012;12:89. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22414244. - 836. Meyerhardt JA, Li L, Sanoff HK, et al. Effectiveness of bevacizumab with first-line combination chemotherapy for Medicare patients with stage IV colorectal cancer. J Clin Oncol 2012;30:608-615. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22253466. - 837. Hartmann H, Muller J, Marschner N. Is there a difference in demography and clinical characteristics in patients treated with and without bevacizumab? J Clin Oncol 2012;30:3317-3318; author reply 3318. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22649139. - 838. Hurwitz HI, Lyman GH. Registries and randomized trials in assessing the effects of bevacizumab in colorectal cancer: is there a common theme? J Clin Oncol 2012;30:580-581. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22253468. - 839. Ranpura V, Hapani S, Wu S. Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 2011;305:487-494. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21285426. - 840. Hurwitz HI, Saltz LB, Van Cutsem E, et al. Venous thromboembolic events with chemotherapy plus bevacizumab: a pooled analysis of patients in randomized phase II and III studies. J Clin Oncol 2011;29:1757-1764. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21422411. - 841. Dai F, Shu L, Bian Y, et al. Safety of bevacizumab in treating metastatic colorectal cancer: a systematic review and meta-analysis of all randomized clinical trials. Clin Drug Investig 2013;33:779-788. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23979925. - 842. Cannistra SA, Matulonis UA, Penson RT, et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007;25:5180-5186. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18024865. - 843. Gruenberger B, Tamandl D, Schueller J, et al. Bevacizumab, capecitabine, and oxaliplatin as neoadjuvant therapy for patients with potentially curable metastatic colorectal cancer. J Clin Oncol 2008;26:1830-1835. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18398148. - 844. Reddy SK, Morse MA, Hurwitz HI, et al. Addition of bevacizumab to irinotecan- and oxaliplatin-based preoperative chemotherapy regimens does not increase morbidity after resection of colorectal liver metastases. J Am Coll Surg 2008;206:96-9106. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18155574. - 845. Miles D, Harbeck N, Escudier B, et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J Clin Oncol 2011;29:83-88. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21098326. - 846. Miles DW. Reply to P. Potemski. J Clin Oncol 2011;29:e386. Available at: http://jco.ascopubs.org/content/29/13/e386.full. - 847. Potemski P. Is the postprogression survival time really not shortened in the bevacizumab-containing arms of phase III clinical trials? J Clin Oncol 2011;29:e384-385. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21422432. - 848. U.S. Food & Drug Administration. Package Insert. cetuximab injection, for intravenous use. 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125084s275lbl.pdf. Accessed February 10, 2023. - 849. Carrato A, Abad A, Massuti B, et al. First-line panitumumab plus FOLFOX4 or FOLFIRI in colorectal cancer with multiple or unresectable liver metastases: A randomised, phase II trial (PLANET-TTD). Eur J Cancer 2017;81:191-202. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28633089. - 850. Pietrantonio F, Cremolini C, Petrelli F, et al. First-line anti-EGFR monoclonal antibodies in panRAS wild-type metastatic colorectal cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2015;96:156-166. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26088456. - 851. Helbling D, Borner M. Successful challenge with the fully human EGFR antibody panitumumab following an infusion reaction with the chimeric EGFR antibody cetuximab. Ann Oncol 2007;18:963-964. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17488734. - 852. Heun J, Holen K. Treatment with panitumumab after a severe infusion reaction to cetuximab in a patient with metastatic colorectal cancer: a case report. Clin Colorectal Cancer 2007;6:529-531. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17553202. - 853. Resch G, Schaberl-Moser R, Kier P, et al. Infusion reactions to the chimeric EGFR inhibitor cetuximab--change to the fully human anti-EGFR monoclonal antibody panitumumab is safe. Ann Oncol 2011;22:486-487. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21239398. - 854. Jonker DJ, O'Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med 2007;357:2040-2048. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18003960. - 855. Petrelli F, Borgonovo K, Barni S. The predictive role of skin rash with cetuximab and panitumumab in colorectal cancer patients: a systematic review and meta-analysis of published trials. Target Oncol 2013;8:173-181. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23321777. - 856. Stintzing S, Kapaun C, Laubender RP, et al. Prognostic value of cetuximab-related skin toxicity in metastatic colorectal cancer patients and its correlation with parameters of the epidermal growth factor receptor signal transduction pathway: results from a randomized trial of the GERMAN AIO CRC Study Group. Int J Cancer 2013;132:236-245. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22644776. - 857. Van Cutsem E, Tejpar S, Vanbeckevoort D, et al. Intrapatient cetuximab dose escalation in metastatic colorectal cancer according to the grade of early skin reactions: the randomized EVEREST study. J Clin Oncol 2012;30:2861-2868. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22753904. - 858. Burtness B, Anadkat M, Basti S, et al. NCCN Task Force Report: management of dermatologic and other toxicities associated with EGFR inhibition in patients with cancer. J Natl Compr Canc Netw 2009;7 Suppl 1:5-5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19470276. - 859. Petrelli F, Cabiddu M, Borgonovo K, Barni S. Risk of venous and arterial thromboembolic events associated with anti-EGFR agents: a meta-analysis of randomized clinical trials. Ann Oncol 2012;23:1672-1679. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22241897. - 860. Zhang D, Ye J, Xu T, Xiong B. Treatment related severe and fatal adverse events with cetuximab in colorectal cancer patients: a meta-analysis. J Chemother 2013;25:170-175. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23783142. - 861. Brule SY, Jonker DJ, Karapetis CS, et al. Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur J Cancer 2015;51:1405-1414. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25979833. - 862. Moretto R, Cremolini C, Rossini D, et al. Location of primary tumor and benefit from anti-epidermal growth factor receptor monoclonal antibodies in patients with RAS and BRAF wild-type metastatic colorectal cancer. Oncologist 2016;21:988-994. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27382031. - 863. Loupakis F, Yang D, Yau L, et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J Natl Cancer Inst 2015;107. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25713148. - 864. Chen KH, Shao YY, Chen HM, et al. Primary tumor site is a useful predictor of cetuximab efficacy in the third-line or salvage treatment of KRAS wild-type (exon 2 non-mutant) metastatic colorectal cancer: a nationwide cohort study. BMC Cancer 2016;16:327. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/27221731. - 865. Warschkow R, Sulz MC, Marti L, et al. Better survival in right-sided versus left-sided stage I III colon cancer patients. BMC Cancer 2016;16:554. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27464835. 866. Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1{o}) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance) [abstract]. ASCO Meeting Abstracts 2016;34:3504. Available at: http://meetinglibrary.asco.org/content/161936-176. 867. Yahagi M, Okabayashi K, Hasegawa H, et al. The worse prognosis of right-sided compared with left-sided colon cancers: A systematic review and meta-analysis. J Gastrointest Surg 2016;20:648-655. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26573851. 868. Wang F, Bai L, Liu TS, et al. Right-sided colon cancer and left-sided colorectal cancers respond differently to cetuximab. Chin J Cancer 2015;34:384-393. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26111811. 869. Arnold D, Lueza B, Douillard JY, et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol 2017;28:1713-1729. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28407110. 870. Venook AP, Niedzwiecki D, Innocenti F, et al. Impact of primary (1°) tumor location on overall survival (OS) and progression free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of all RAS wt patients on CALGB / SWOG 80405 (Alliance) [abstract]. ESMO Congress 2016;34:3504-3504. Available at: 871. Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell 2018;33:125-136.e123. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29316426. 872. Lang I, Kohne CH, Folprecht G, et al. Quality of life analysis in patients with KRAS wild-type metastatic colorectal cancer treated first-line with cetuximab plus irinotecan, fluorouracil and leucovorin. Eur J Cancer 2013;49:439-448. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23116683. 873. Van Cutsem E, Lenz HJ, Kohne CH, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 2015;33:692-700. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25605843. 874. Mitchell EP, Piperdi B, Lacouture ME, et al. The efficacy and safety of panitumumab administered concomitantly with FOLFIRI or Irinotecan in second-line therapy for metastatic colorectal cancer: the secondary analysis from STEPP (Skin Toxicity Evaluation Protocol With Panitumumab) by KRAS status. Clin Colorectal Cancer 2011;10:333-339. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22000810. 875. Peeters M, Price TJ, Cervantes A, et al. Final results from a randomized phase 3 study of FOLFIRI {+/-} panitumumab for second-line treatment of metastatic colorectal cancer. Ann Oncol 2014;25:107-116. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24356622. 876. Bokemeyer C, Bondarenko I, Hartmann JT, et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 2011;22:1535-1546. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21228335. 877. Tveit KM, Guren T, Glimelius B, et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol 2012;30:1755-1762. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22473155. 878. Qin S, Li J, Wang L, et al. Efficacy and Tolerability of First-Line Cetuximab Plus Leucovorin, Fluorouracil, and Oxaliplatin (FOLFOX-4) Versus FOLFOX-4 in Patients With RAS Wild-Type Metastatic Colorectal Cancer: The Open-Label, Randomized, Phase III TAILOR Trial. J Clin Oncol 2018:Jco2018783183. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30199311. 879. Cremolini C, Rossini D, Lonardi S, et al. Modified FOLFOXIRI plus panitumumab (mFOLFOXIRI/PAN) versus mFOLFOX6/PAN as initial treatment of patients with unresectable RAS and BRAF wild-type metastatic colorectal cancer (mCRC): Results of the phase III randomized TRIPLETE study by GONO. Journal of Clinical Oncology 2022;40:LBA3505-LBA3505. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.17 suppl.LBA3505. 880. Iwamoto S, Maeda H, Hazama S, et al. Efficacy of capeox plus cetuximab treatment as a first-line therapy for patients with extended RAS/BRAF/PIK3CA wild-type advanced or metastatic colorectal cancer. J Cancer 2018;9:4092-4098. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30519308. 881. Modest DP, Stintzing S, von Weikersthal LF, et al. Impact of subsequent therapies on outcome of the FIRE-3/AIO KRK0306 trial: first-line therapy with FOLFIRI plus cetuximab or bevacizumab in patients with KRAS wild-type tumors in metastatic colorectal cancer. J Clin Oncol 2015;33:3718-3726. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26261259. 882. O'Neil BH, Venook AP. Trying to understand differing results of FIRE-3 and 80405: does the first treatment matter more than others? J Clin Oncol 2015;33:3686-3688. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26324365. 883. Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: final survival and per-protocol analysis of FIRE-3, a randomised clinical trial. Br J Cancer 2021;124:587-594. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33154570. 884. Yoshino T, Watanabe J, Shitara K, et al. Panitumumab (PAN) plus mFOLFOX6 versus bevacizumab (BEV) plus mFOLFOX6 as first-line treatment in patients with RAS wild-type (WT) metastatic colorectal cancer (mCRC): Results from the phase 3 PARADIGM trial [abstract]. Journal of Clinical Oncology 2022;40:LBA1-LBA1. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.17_suppl.LBA1. 885. Schwartzberg LS, Rivera F, Karthaus M, et al. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol 2014;32:2240-2247. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24687833. 886. Rivera F, Karthaus M, Hecht JR, et al. Final analysis of the randomised PEAK trial: overall survival and tumour responses during first-line treatment with mFOLFOX6 plus either panitumumab or bevacizumab in patients with metastatic colorectal carcinoma. Int J Colorectal Dis 2017;32:1179-1190. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28424871. - 887. Wolpin BM, Bass AJ. Managing advanced colorectal cancer: have we reached the PEAK with current therapies? J Clin Oncol 2014;32:2200-2202. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24934780. - 888. Riesco-Martinez MC, Berry SR, Ko YJ, et al. Cost-effectiveness analysis of different sequences of the use of epidermal growth factor receptor inhibitors for wild-type KRAS unresectable metastatic colorectal cancer. J Oncol Pract 2016;12:e710-723. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27143148. - 889. Graham CN, Christodoulopoulou A, Knox HN, et al. A within-trial cost-effectiveness analysis of panitumumab compared with bevacizumab in the first-line treatment of patients with wild-type RAS metastatic colorectal cancer in the US. J Med Econ 2018;21:1075-1083. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30091652. - 890. Shankaran V, Ortendahl JD, Purdum AG, et al. Cost-Effectiveness of Cetuximab as First-line Treatment for Metastatic Colorectal Cancer in the United States. Am J Clin Oncol 2018;41:65-72. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26398184. - 891. Andre T, Shiu KK, Kim TW, et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med 2020;383:2207-2218. Available at: $\underline{https://www.ncbi.nlm.nih.gov/pubmed/33264544}.$ 892. Diaz LA, Jr., Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol 2022;23:659-670. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35427471. 893. Andre T, Amonkar M, Norquist JM, et al. Health-related quality of life in patients with microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer treated with first-line pembrolizumab versus chemotherapy (KEYNOTE-177): an open-label, randomised, phase 3 trial. Lancet Oncol 2021;22:665-677. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33812497. 894. Lenz HJ, Van Cutsem E, Luisa Limon M, et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J Clin Oncol 2022;40:161-170. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34637336. 895. Overman MJ, Lenz H-J, Andre T, et al. Nivolumab
(NIVO) ± ipilimumab (IPI) in patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): Five-year follow-up from CheckMate 142 [abstract]. Journal of Clinical Oncology 2022;40:3510-3510. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16 suppl.3510. 896. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26028255. 897. Sul J, Blumenthal GM, Jiang X, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016;21:643-650. Available at: http://theoncologist.alphamedpress.org/content/21/5/643.short. 898. Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017;18:1182-1191. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28734759. 899. Overman MJ, Lonardi S, Wong KYM, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol 2018;36:773-779. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29355075. 900. Lewis C. Programmed death-1 inhibition in cancer with a focus on non-small cell lung cancer: rationale, nursing implications, and patient management strategies. Clin J Oncol Nurs 2016;20:319-326. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27206299. 901. Hofmann L, Forschner A, Loquai C, et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer 2016;60:190-209. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27085692. 902. Zimmer L, Goldinger SM, Hofmann L, et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer 2016;60:210-225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27084345. 903. Naidoo J, Wang X, Woo KM, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol 2016;35:709-717. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27646942. 904. Nishino M, Chambers ES, Chong CR, et al. Anti-PD-1 inhibitor-related pneumonitis in non-small cell lung cancer. Cancer Immunol Res 2016;4:289-293. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26865455. 905. Nishino M, Sholl LM, Hodi FS, et al. Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med 2015;373:288-290. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26176400. 906. Hoff PM, Pazdur R, Lassere Y, et al. Phase II study of capecitabine in patients with fluorouracil-resistant metastatic colorectal carcinoma. J Clin Oncol 2004;22:2078-2083. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15169794. 907. Cunningham D, Pyrhonen S, James RD, et al. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 1998;352:1413-1418. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9807987. 908. Rougier P, Van Cutsem E, Bajetta E, et al. Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet 1998;352:1407-1412. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9807986. 909. Wulaningsih W, Wardhana A, Watkins J, et al. Irinotecan chemotherapy combined with fluoropyrimidines versus irinotecan alone for overall survival and progression-free survival in patients with advanced and/or metastatic colorectal cancer. Cochrane Database Syst Rev 2016;2:CD008593. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26869023. - 910. Kim GP, Sargent DJ, Mahoney MR, et al. Phase III noninferiority trial comparing irinotecan with oxaliplatin, fluorouracil, and leucovorin in patients with advanced colorectal carcinoma previously treated with fluorouracil: N9841. J Clin Oncol 2009;27:2848-2854. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19380443. - 911. Segelov E, Chan D, Shapiro J, et al. The role of biological therapy in metastatic colorectal cancer after first-line treatment: a meta-analysis of randomised trials. Br J Cancer 2014;111:1122-1131. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25072258. - 912. Hofheinz RD, Ronellenfitsch U, Kubicka S, et al. Treatment with antiangiogenic drugs in multiple lines in patients with metastatic colorectal cancer: meta-analysis of randomized trials. Gastroenterol Res Pract 2016;2016:9189483. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27656206. 913. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 2007;25:1658-1664. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17470858. 914. Kim TW, Elme A, Kusic Z, et al. A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer. Br J Cancer 2016;115:1206-1214. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27736842. 915. Peeters M, Oliner K, Price TJ, et al. Analysis of KRAS/NRAS mutations in a phase 3 study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer. Clin Cancer Res 2015;21:5469-5479. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26341920. 916. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351:337-345. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15269313. - 917. Saltz LB, Meropol NJ, Loehrer PJ, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004;22:1201-1208. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14993230. - 918. Sobrero AF, Maurel J, Fehrenbacher L, et al. EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:2311-2319. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18390971. - 919. Sobrero A, Lenz HJ, Eng C, et al. Extended RAS Analysis of the Phase III EPIC Trial: Irinotecan + Cetuximab Versus Irinotecan as Second-Line Treatment for Patients with Metastatic Colorectal Cancer. Oncologist 2021;26:e261-e269. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33191588. - 920. Price TJ, Peeters M, Kim TW, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol 2014;15:569-579. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24739896. - 921. Price T, Kim TW, Li J, et al. Final results and outcomes by prior bevacizumab exposure, skin toxicity, and hypomagnesaemia from ASPECCT: randomized phase 3 non-inferiority study of panitumumab versus cetuximab in chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer. Eur J Cancer 2016;68:51-59. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27716478. - 922. Hecht JR, Cohn A, Dakhil S, et al. SPIRITT: a randomized, multicenter, phase II study of panitumumab with FOLFIRI and bevacizumab with FOLFIRI as second-line treatment in patients with unresectable wild type KRAS metastatic colorectal cancer. Clin Colorectal Cancer 2015;14:72-80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25982297. - 923. Rossini D, Germani MM, Lonardi S, et al. Treatments after second progression in metastatic colorectal cancer: A pooled analysis of the TRIBE and TRIBE2 studies. Eur J Cancer 2022;170:64-72. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35594613. - 924. Bennouna J, Sastre J, Arnold D, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 2013;14:29-37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23168366. - 925. Kubicka S, Greil R, Andre T, et al. Bevacizumab plus chemotherapy continued beyond first progression in patients with metastatic colorectal cancer previously treated with bevacizumab plus chemotherapy: ML18147 study KRAS subgroup findings. Ann Oncol 2013;24:2342-2349. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23852309. - 926. Masi G, Salvatore L, Boni L, et al. Continuation or reintroduction of bevacizumab beyond progression to first-line therapy in metastatic colorectal cancer: final results of the randomized BEBYP trial. Ann Oncol 2015;26:724-730. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25600568. - 927. Iwamoto S, Takahashi T, Tamagawa H, et al. FOLFIRI plus bevacizumab as second-line therapy in patients with metastatic colorectal cancer after first-line bevacizumab plus oxaliplatin-based therapy: the randomized phase III EAGLE study. Ann Oncol 2015;26:1427-1433.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/25908603. - 928. Cartwright TH, Yim YM, Yu E, et al. Survival outcomes of bevacizumab beyond progression in metastatic colorectal cancer patients treated in US community oncology. Clin Colorectal Cancer 2012;11:238-246. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22658457. - 929. Grothey A, Flick ED, Cohn AL, et al. Bevacizumab exposure beyond first disease progression in patients with metastatic colorectal cancer: analyses of the ARIES observational cohort study. Pharmacoepidemiol Drug Saf 2014;23:726-734. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24830357. - 930. Goldstein DA, El-Rayes BF. Considering Efficacy and Cost, Where Does Ramucirumab Fit in the Management of Metastatic Colorectal Cancer? Oncologist 2015;20:981-982. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26265225. - 931. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007;25:1539-1544. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17442997. - 932. U.S. Food & Drug Administration. Package Insert. ziv-aflibercept injection for intravenous infusion. 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125418s047lbl.pdf. Accessed February 10, 2023. - 933. Van Cutsem E, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012;30:3499-3506. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22949147. - 934. Tabernero J, Van Cutsem E, Lakomy R, et al. Aflibercept versus placebo in combination with fluorouracil, leucovorin and irinotecan in the treatment of previously treated metastatic colorectal cancer: prespecified subgroup analyses from the VELOUR trial. Eur J Cancer 2014;50:320-331. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24140268. - 935. Folprecht G, Pericay C, Saunders MP, et al. Oxaliplatin and 5-FU/folinic acid (modified FOLFOX6) with or without aflibercept in first-line treatment of patients with metastatic colorectal cancer: the AFFIRM study. Ann Oncol 2016;27:1273-1279. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27091810. - 936. U.S. Food & Drug Administration. Package Insert. ramucirumab injection for intravenous use. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125477s042lbl.pdf. Accessed February 10, 2023. - 937. Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 2015;16:499-508. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25877855. 938. Obermannova R, Van Cutsem E, Yoshino T, et al. Subgroup analysis in RAISE: a randomized, double-blind phase III study of irinotecan, folinic acid, and 5-fluorouracil (FOLFIRI) plus ramucirumab or placebo in patients with metastatic colorectal carcinoma progression. Ann Oncol 2016;27:2082-2090. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27573561. 939. Arnold D, Fuchs CS, Tabernero J, et al. Meta-analysis of individual patient safety data from six randomized, placebo-controlled trials with the antiangiogenic VEGFR2-binding monoclonal antibody ramucirumab. Ann Oncol 2017;28:2932-2942. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28950290. 940. Van Cutsem E, Huijberts S, Grothey A, et al. Binimetinib, Encorafenib, and Cetuximab Triplet Therapy for Patients With BRAF V600E-Mutant Metastatic Colorectal Cancer: Safety Lead-In Results From the Phase III BEACON Colorectal Cancer Study. J Clin Oncol 2019;37:1460-1469. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30892987. - 941. Kopetz S, Grothey A, Yaeger R, et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N Engl J Med 2019. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31566309. - 942. Tabernero J, Grothey A, Van Cutsem E, et al. Encorafenib Plus Cetuximab as a New Standard of Care for Previously Treated BRAF V600E-Mutant Metastatic Colorectal Cancer: Updated Survival Results and Subgroup Analyses from the BEACON Study. J Clin Oncol 2021;39:273-284. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33503393. - 943. Kopetz S, Grothey A, Van Cutsem E, et al. Quality of life with encorafenib plus cetuximab with or without binimetinib treatment in patients with BRAF V600E-mutant metastatic colorectal cancer: patient-reported outcomes from BEACON CRC. ESMO Open 2022;7:100477. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35653981. - 944. Kopetz S, Guthrie KA, Morris VK, et al. Randomized Trial of Irinotecan and Cetuximab With or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol 2021;39:285-294. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33356422. - 945. Corcoran RB, Andre T, Atreya CE, et al. Combined BRAF, EGFR, and MEK Inhibition in Patients with BRAF(V600E)-Mutant Colorectal Cancer. Cancer Discov 2018;8:428-443. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29431699. - 946. Meric-Bernstam F, Hurwitz H, Raghav KPS, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2019;20:518-530. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30857956. 947. Gupta R, Meric-Bernstam F, Rothe M, et al. Pertuzumab Plus Trastuzumab in Patients With Colorectal Cancer With ERBB2 Amplification or ERBB2/3 Mutations: Results From the TAPUR Study. JCO Precis Oncol 2022;6:e2200306. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36315917. 948. Strickler J. LBA-2 Primary analysis of MOUNTAINEER: A phase 2 study of tucatinib and trastuzumab for HER2-positive mCRC. Annals of Oncology 2022;33:S375-S376. Available at: https://www.sciencedirect.com/science/article/pii/S0923753422011309. 949. Siena S, Di Bartolomeo M, Raghav K, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol 2021;22:779-789. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33961795. 950. Awad MM, Liu S, Rybkin, II, et al. Acquired Resistance to KRAS(G12C) Inhibition in Cancer. N Engl J Med 2021;384:2382-2393. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34161704. 951. Hong DS, Fakih MG, Strickler JH, et al. KRAS(G12C) Inhibition with Sotorasib in Advanced Solid Tumors. N Engl J Med 2020;383:1207-1217. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32955176. 952. Fakih MG, Kopetz S, Kuboki Y, et al. Sotorasib for previously treated colorectal cancers with KRAS(G12C) mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol 2022;23:115-124. Available at: 953. Kuboki Y, Yaeger R, Fakih M, et al. Sotorasib in combination with panitumumab in refractory KRAS G12C-mutated colorectal cancer: Safety and efficacy for phase Ib full expansion cohort [abstract]. Annals of Oncology 2022;33:S1445-S1446. Available at: https://doi.org/10.1016/j.annonc.2022.10.077. 954. Yaeger R, Weiss J, Pelster MS, et al. Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated KRAS G12C. N Engl J Med 2023;388:44-54. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36546659. 955. Le DT, Kim TW, Van Cutsem E, et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J Clin Oncol 2020;38:11-19. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31725351. 956. U.S. Food & Drug Administration. Package Insert. nivolumab injection, for intravenous use. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125554s109lbl.pdf. Accessed February 13, 2023. 957. Morse MA, Overman MJ, Hartman L, et al. Safety of Nivolumab plus Low-Dose Ipilimumab in Previously Treated Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer. Oncologist 2019;24:1453-1461. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31147488. 958. U.S. Food & Drug Administration. Package Insert. dostarlimab-gxly injection, for intravenous use. 2023. Available at: <a
href="https://www.accessdata.fda.gov/drugsatf 004lbl.pdf. Accessed February 13, 2023. 959. Andre T, Berton D, Curigliano G, et al. Safety and efficacy of anti–PD-1 antibody dostarlimab in patients (pts) with mismatch repair-deficient (dMMR) solid cancers: Results from GARNET study [abstract]. Journal of Clinical Oncology 2021;39:9-9. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.3 suppl.9. 960. U.S. Food & Drug Administration. Package Insert. entrectinib capsules, for oral use. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/212725s006lbl.pdf. Accessed February 13, 2023. 961. U.S. Food & Drug Administration. Package Insert. larotrectinib capsules for oral use. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/210861s008lbl.pdf. Accessed February 10, 2023. 962. Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 2020;21:531-540. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32105622. 963. Berlin J, Hong DS, Deeken JF, et al. Efficacy and safety of larotrectinib in patients with TRK fusion gastrointestinal cancer [abstract]. Journal of Clinical Oncology 2020;38:824-824. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.4 suppl.824. 964. Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020;21:271-282. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31838007. 965. U.S. Food & Drug Administration. Package Insert. selpercatinib capsules, for oral use. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/213246s008lbl.pdf. Accessed February 13, 2023. 966. U.S. Food & Drug Administration. Package Insert. regorafenib tablets for oral use. 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/203085s013l bl.pdf. Accessed February 10. 2023. 967. Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebocontrolled, phase 3 trial. Lancet 2013;381:303-312. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23177514. 968. Li J, Qin S, Xu R, et al. Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2015;16:619-629. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25981818. 969. Belum VR, Wu S, Lacouture ME. Risk of hand-foot skin reaction with the novel multikinase inhibitor regorafenib: a meta-analysis. Invest New Drugs 2013;31:1078-1086. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23700287. 970. Van Cutsem E, Martinelli E, Cascinu S, et al. Regorafenib for Patients with Metastatic Colorectal Cancer Who Progressed After Standard Therapy: Results of the Large, Single-Arm, Open-Label Phase IIIb CONSIGN Study. Oncologist 2019;24:185-192. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30190299. 971. Adenis A, de la Fouchardiere C, Paule B, et al. Survival, safety, and prognostic factors for outcome with Regorafenib in patients with metastatic colorectal cancer refractory to standard therapies: results from a multicenter study (REBACCA) nested within a compassionate use program. BMC Cancer 2016;16:412. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27389564. 972. Ducreux M, Petersen LN, Ohler L, et al. Safety and effectiveness of regorafenib in patients with metastatic colorectal cancer in routine clinical practice in the prospective, observational CORRELATE study. Eur J Cancer 2019;123:146-154. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31698328. 973. Bekaii-Saab TS, Ou FS, Ahn DH, et al. Regorafenib dose-optimisation in patients with refractory metastatic colorectal cancer (ReDOS): a randomised, multicentre, open-label, phase 2 study. Lancet Oncol 2019;20:1070-1082. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31262657. 974. Bendell JC, Rosen LS, Mayer RJ, et al. Phase 1 study of oral TAS-102 in patients with refractory metastatic colorectal cancer. Cancer Chemother Pharmacol 2015;76:925-932. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26370544. 975. Yoshino T, Mizunuma N, Yamazaki K, et al. TAS-102 monotherapy for pretreated metastatic colorectal cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol 2012;13:993-1001. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22951287. 976. Mayer RJ, Van Cutsem E, Falcone A, et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med 2015;372:1909-1919. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25970050. 977. U.S. Food & Drug Administration. Package Insert. trifluridine and tipiracil tablets, for oral use. 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/207981s009l bl.pdf. Accessed February 10, 2023. 978. Yoshino T, Uetake H, Fujita N, et al. TAS-102 safety in metastatic colorectal cancer: results from the first postmarketing surveillance study. Clin Colorectal Cancer 2016;15:e205-e211. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27324983. 979. Van Cutsem E, Mayer RJ, Laurent S, et al. The subgroups of the phase III RECOURSE trial of trifluridine/tipiracil (TAS-102) versus placebo with best supportive care in patients with metastatic colorectal cancer. Eur J Cancer 2018;90:63-72. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29274618. 980. Kuboki Y, Nishina T, Shinozaki E, et al. TAS-102 plus bevacizumab for patients with metastatic colorectal cancer refractory to standard therapies (C-TASK FORCE): an investigator-initiated, open-label, single-arm, multicentre, phase 1/2 study. Lancet Oncol 2017;18:1172-1181. Available at: https://pubmed.ncbi.nlm.nih.gov/28760399/. 981. Pfeiffer P, Yilmaz M, Möller S, et al. TAS-102 with or without bevacizumab in patients with chemorefractory metastatic colorectal cancer: an investigator-initiated, open-label, randomised, phase 2 trial. Lancet Oncol 2020;21:412-420. Available at: https://pubmed.ncbi.nlm.nih.gov/31999946/. 982. Fujii H, Matsuhashi N, Kitahora M, et al. Bevacizumab in Combination with TAS-102 Improves Clinical Outcomes in Patients with Refractory Metastatic Colorectal Cancer: A Retrospective Study. Oncologist 2020;25:e469-e476. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31748337. 983. Patel AK, Barghout V, Yenikomshian MA, et al. Real-World Adherence in Patients with Metastatic Colorectal Cancer Treated with Trifluridine plus Tipiracil or Regorafenib. Oncologist 2020;25:e75-e84. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31591140. 984. Andre T, Falcone A, Shparyk Y, et al. Trifluridine-tipiracil plus bevacizumab versus capecitabine plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer ineligible for intensive therapy (SOLSTICE): a randomised, open-label phase 3 study. Lancet Gastroenterol Hepatol 2023;8:133-144. Available at: https://www.ncbi.nlm.nih.gov/pubmed/36470291. 985. Van Cutsem E, Danielewicz
I, Saunders MP, et al. First-line trifluridine/tipiracil + bevacizumab in patients with unresectable metastatic colorectal cancer: final survival analysis in the TASCO1 study. Br J Cancer 2022;126:1548-1554. Available at: https://www.ncbi.nlm.nih.gov/pubmed/35440667. 986. Van Cutsem E, Danielewicz I, Saunders MP, et al. Trifluridine/tipiracil plus bevacizumab in patients with untreated metastatic colorectal cancer ineligible for intensive therapy: the randomized TASCO1 study. Ann Oncol 2020;31:1160-1168. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32497736. 987. Moulton CA, Gu CS, Law CH, et al. Effect of PET before liver resection on surgical management for colorectal adenocarcinoma metastases: a randomized clinical trial. JAMA 2014;311:1863-1869. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24825641. 988. Maffione AM, Lopci E, Bluemel C, et al. Diagnostic accuracy and impact on management of (18)F-FDG PET and PET/CT in colorectal liver metastasis: a meta-analysis and systematic review. Eur J Nucl Med Mol Imaging 2015;42:152-163. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25319712. 989. Delbeke D, Martin WH. PET and PET-CT for evaluation of colorectal carcinoma. Semin Nucl Med 2004;34:209-223. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15202102. - 990. Adam R, Miller R, Pitombo M, et al. Two-stage hepatectomy approach for initially unresectable colorectal hepatic metastases. Surg Oncol Clin N Am 2007;16:525-536. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17606192. - 991. Baltatzis M, Chan AK, Jegatheeswaran S, et al. Colorectal cancer with synchronous hepatic metastases: systematic review of reports comparing synchronous surgery with sequential bowel-first or liver-first approaches. Eur J Surg Oncol 2016;42:159-165. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26733368. - 992. Chen J, Li Q, Wang C, et al. Simultaneous vs. staged resection for synchronous colorectal liver metastases: a metaanalysis. Int J Colorectal Dis 2011;26:191-199. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20669024. - 993. Feng Q, Wei Y, Zhu D, et al. Timing of hepatectomy for resectable synchronous colorectal liver metastases: for whom simultaneous resection is more suitable--a meta-analysis. PLoS One 2014;9:e104348. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25093337. - 994. Lykoudis PM, O'Reilly D, Nastos K, Fusai G. Systematic review of surgical management of synchronous colorectal liver metastases. Br J Surg 2014;101:605-612. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24652674. - 995. Mayo SC, Pulitano C, Marques H, et al. Surgical management of patients with synchronous colorectal liver metastasis: a multicenter international analysis. J Am Coll Surg 2013;216:707-716; discussion 716-708. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23433970. - 996. Reddy SK, Pawlik TM, Zorzi D, et al. Simultaneous resections of colorectal cancer and synchronous liver metastases: a multi-institutional analysis. Ann Surg Oncol 2007;14:3481-3491. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17805933. - 997. Slesser AA, Simillis C, Goldin R, et al. A meta-analysis comparing simultaneous versus delayed resections in patients with synchronous - colorectal liver metastases. Surg Oncol 2013;22:36-47. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23253399. - 998. Worni M, Mantyh CR, Akushevich I, et al. Is there a role for simultaneous hepatic and colorectal resections? A contemporary view from NSQIP. J Gastrointest Surg 2012;16:2074-2085. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22972010. - 999. Boudjema K, Locher C, Sabbagh C, et al. Simultaneous Versus Delayed Resection for Initially Resectable Synchronous Colorectal Cancer Liver Metastases: A Prospective, Open-label, Randomized, Controlled Trial. Ann Surg 2021;273:49-56. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32209911. - 1000. Kelly ME, Spolverato G, Le GN, et al. Synchronous colorectal liver metastasis: a network meta-analysis review comparing classical, combined, and liver-first surgical strategies. J Surg Oncol 2015;111:341-351. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25363294. - 1001. Reddy SK, Zorzi D, Lum YW, et al. Timing of multimodality therapy for resectable synchronous colorectal liver metastases: a retrospective multi-institutional analysis. Ann Surg Oncol 2009;16:1809-1819. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18979139. - 1002. Brouquet A, Mortenson MM, Vauthey JN, et al. Surgical strategies for synchronous colorectal liver metastases in 156 consecutive patients: classic, combined or reverse strategy? J Am Coll Surg 2010;210:934-941. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20510802. - 1003. de Jong MC, van Dam RM, Maas M, et al. The liver-first approach for synchronous colorectal liver metastasis: a 5-year single-centre experience. HPB (Oxford) 2011;13:745-752. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21929676. - 1004. De Rosa A, Gomez D, Brooks A, Cameron IC. "Liver-first" approach for synchronous colorectal liver metastases: is this a justifiable approach? J Hepatobiliary Pancreat Sci 2013;20:263-270. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23325126. 1005. Jegatheeswaran S, Mason JM, Hancock HC, Siriwardena AK. The liver-first approach to the management of colorectal cancer with synchronous hepatic metastases: a systematic review. JAMA Surg 2013;148:385-391. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23715907. 1006. Lam VW, Laurence JM, Pang T, et al. A systematic review of a liver-first approach in patients with colorectal cancer and synchronous colorectal liver metastases. HPB (Oxford) 2014;16:101-108. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23509899. 1007. Mentha G, Roth AD, Terraz S, et al. 'Liver first' approach in the treatment of colorectal cancer with synchronous liver metastases. Dig Surg 2008;25:430-435. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19212115. 1008. Mentha G, Majno P, Terraz S, et al. Treatment strategies for the management of advanced colorectal liver metastases detected synchronously with the primary tumour. Eur J Surg Oncol 2007;33 Suppl 2:S76-83. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18006267. 1009. Van Dessel E, Fierens K, Pattyn P, et al. Defining the optimal therapy sequence in synchronous resectable liver metastases from colorectal cancer: a decision analysis approach. Acta Chir Belg 2009;109:317-320. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19943586. 1010. Kanemitsu Y, Shimizu Y, Mizusawa J, et al. Hepatectomy followed by mFOLFOX6 versus hepatectomy alone for liver-only metastatic colorectal cancer (JCOG0603): A phase II or III randomized controlled trial. J Clin Oncol 2021;39:3789-3799. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34520230. 1011. Bartlett DL, Berlin J, Lauwers GY, et al. Chemotherapy and regional therapy of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol 2006;13:1284-1292. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16955384. 1012. Faron M, Pignon JP, Malka D, et al. Is primary tumour resection associated with survival improvement in patients with colorectal cancer and unresectable synchronous metastases? A pooled analysis of individual data from four randomised trials. Eur J Cancer 2015;51:166-176. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25465185. 1013. Ishihara S, Nishikawa T, Tanaka T, et al. Benefit of primary tumor resection in stage IV colorectal cancer with unresectable metastasis: a multicenter retrospective study using a propensity score analysis. Int J Colorectal Dis 2015;30:807-812. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25922146. 1014. Karoui M, Roudot-Thoraval F, Mesli F, et al. Primary colectomy in patients with stage IV colon cancer and unresectable distant metastases improves overall survival: results of a multicentric study. Dis Colon Rectum 2011;54:930-938. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21730780. 1015. Venderbosch S, de Wilt JH, Teerenstra S, et al. Prognostic value of resection of primary tumor in patients with stage IV colorectal cancer: retrospective analysis of two randomized studies and a review of the literature. Ann Surg Oncol 2011;18:3252-3260. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21822557. 1016. Ahmed S, Shahid RK, Leis A, et al. Should noncurative resection of the primary tumour be performed in patients with stage iv colorectal cancer? A systematic review and meta-analysis. Curr Oncol 2013;20:e420-441. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24155639. 1017. Anwar S, Peter MB, Dent J, Scott NA. Palliative excisional surgery for primary colorectal cancer in patients with incurable metastatic disease. Is there a survival benefit? A systematic review. Colorectal Dis 2012;14:920-930. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21899714. 1018. Clancy C, Burke JP, Barry M, et al. A meta-analysis to determine the effect of primary tumor resection for stage IV colorectal cancer with
unresectable metastases on patient survival. Ann Surg Oncol 2014;21:3900-3908. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24849523. 1019. Tarantino I, Warschkow R, Worni M, et al. Prognostic relevance of palliative primary tumor removal in 37,793 metastatic colorectal cancer patients: a population-based, propensity score-adjusted trend analysis. Ann Surg 2015;262:112-120. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25373464. 1020. Gulack BC, Nussbaum DP, Keenan JE, et al. Surgical resection of the primary tumor in stage IV colorectal cancer without metastasectomy is associated with improved overall survival compared with chemotherapy/radiation therapy alone. Dis Colon Rectum 2016;59:299-305. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26953988. 1021. Alawadi Z, Phatak UR, Hu CY, et al. Comparative effectiveness of primary tumor resection in patients with stage IV colon cancer. Cancer 2016;123:1124-1133. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27479827. 1022. Kanemitsu Y, Shitara K, Mizusawa J, et al. Primary Tumor Resection Plus Chemotherapy Versus Chemotherapy Alone for Colorectal Cancer Patients With Asymptomatic, Synchronous Unresectable Metastases (JCOG1007; iPACS): A Randomized Clinical Trial. J Clin Oncol 2021;39:1098-1107. Available at: https://www.ncbi.nlm.nih.gov/pubmed/33560877. 1023. van der Kruijssen DEW, Elias SG, Vink GR, et al. Sixty-Day Mortality of Patients With Metastatic Colorectal Cancer Randomized to Systemic Treatment vs Primary Tumor Resection Followed by Systemic Treatment: The CAIRO4 Phase 3 Randomized Clinical Trial. JAMA Surg 2021;156:1093-1101. Available at: https://www.ncbi.nlm.nih.gov/pubmed/34613339. 1024. McCahill LE, Yothers G, Sharif S, et al. Primary mFOLFOX6 plus bevacizumab without resection of the primary tumor for patients presenting with surgically unresectable metastatic colon cancer and an intact asymptomatic colon cancer: definitive analysis of NSABP trial C-10. J Clin Oncol 2012;30:3223-3228. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22869888. 1025. Cirocchi R, Trastulli S, Abraha I, et al. Non-resection versus resection for an asymptomatic primary tumour in patients with unresectable Stage IV colorectal cancer. Cochrane Database Syst Rev 2012;8:CD008997. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22895981. 1026. Yang TX, Billah B, Morris DL, Chua TC. Palliative resection of the primary tumour in patients with Stage IV colorectal cancer: systematic review and meta-analysis of the early outcome after laparoscopic and open colectomy. Colorectal Dis 2013;15:e407-419. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23895669. 1027. Joyce DL, Wahl RL, Patel PV, et al. Preoperative positron emission tomography to evaluate potentially resectable hepatic colorectal metastases. Arch Surg 2006;141:1220-1226; discussion 1227. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17178965. 1028. Pelosi E, Deandreis D. The role of 18F-fluoro-deoxy-glucose positron emission tomography (FDG-PET) in the management of patients with colorectal cancer. Eur J Surg Oncol 2007;33:1-6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17126522. 1029. Gill S, Berry S, Biagi J, et al. Progression-free survival as a primary endpoint in clinical trials of metastatic colorectal cancer. Curr Oncol 2011;18 Suppl 2:S5-S10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21969810. 1030. Booth CM, Eisenhauer EA. Progression-free survival: meaningful or simply measurable? J Clin Oncol 2012;30:1030-1033. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22370321. 1031. Chibaudel B, Bonnetain F, Shi Q, et al. Alternative end points to evaluate a therapeutic strategy in advanced colorectal cancer: evaluation of progression-free survival, duration of disease control, and time to failure of strategy--an Aide et Recherche en Cancerologie Digestive Group Study. J Clin Oncol 2011;29:4199-4204. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21969501. 1032. Shi Q, de Gramont A, Grothey A, et al. Individual patient data analysis of progression-free survival versus overall survival as a first-line end point for metastatic colorectal cancer in modern randomized trials: findings from the analysis and research in cancers of the digestive system database. J Clin Oncol 2015;33:22-28. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25385741. 1033. Carrera G, Garcia-Albeniz X, Ayuso JR, et al. Design and endpoints of clinical and translational trials in advanced colorectal cancer. a proposal from GROUP Espanol Multidisciplinar en Cancer Digestivo (GEMCAD). Rev Recent Clin Trials 2011;6:158-170. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21241233. 1034. Claret L, Gupta M, Han K, et al. Evaluation of tumor-size response metrics to predict overall survival in Western and Chinese patients with first-line metastatic colorectal cancer. J Clin Oncol 2013;31:2110-2114. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23650411. 1035. Sharma MR, Gray E, Goldberg RM, et al. Resampling the N9741 trial to compare tumor dynamic versus conventional end points in randomized phase II trials. J Clin Oncol 2015;33:36-41. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25349295. 1036. Seo SI, Lim SB, Yoon YS, et al. Comparison of recurrence patterns between </=5 years and >5 years after curative operations in colorectal cancer patients. J Surg Oncol 2013;108:9-13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23754582. 1037. Pietra N, Sarli L, Costi R, et al. Role of follow-up in management of local recurrences of colorectal cancer: a prospective, randomized study. Dis Colon Rectum 1998;41:1127-1133. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9749496. 1038. Rodriguez-Moranta F, Salo J, Arcusa A, et al. Postoperative surveillance in patients with colorectal cancer who have undergone curative resection: a prospective, multicenter, randomized, controlled trial. J Clin Oncol 2006;24:386-393. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16365182. 1039. Secco GB, Fardelli R, Gianquinto D, et al. Efficacy and cost of risk-adapted follow-up in patients after colorectal cancer surgery: a prospective, randomized and controlled trial. Eur J Surg Oncol 2002;28:418-423. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12099653. 1040. Desch CE, Benson AB, Somerfield MR, et al. Colorectal cancer surveillance: 2005 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol 2005;23:8512-8519. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16260687. 1041. Figueredo A, Rumble RB, Maroun J, et al. Follow-up of patients with curatively resected colorectal cancer: a practice guideline. BMC Cancer 2003;3:26. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14529575. 1042. Pita-Fernandez S, Alhayek-Ai M, Gonzalez-Martin C, et al. Intensive follow-up strategies improve outcomes in nonmetastatic colorectal cancer patients after curative surgery: a systematic review and meta-analysis. Ann Oncol 2015;26:644-656. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25411419. 1043. Renehan AG, Egger M, Saunders MP, O'Dwyer ST. Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials. BMJ 2002;324:813-813. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11934773. 1044. Mokhles S, Macbeth F, Farewell V, et al. Meta-analysis of colorectal cancer follow-up after potentially curative resection. Br J Surg 2016;103:1259-1268. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27488593. 1045. Kahi CJ, Boland CR, Dominitz JA, et al. Colonoscopy surveillance after colorectal cancer resection: recommendations of the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2016;150:758-768 e711. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26892199. 1046. Tsikitis VL, Malireddy K, Green EA, et al. Postoperative surveillance recommendations for early stage colon cancer based on results from the clinical outcomes of surgical therapy trial. J Clin Oncol 2009;27:3671-3676. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19564531. 1047. Guyot F, Faivre J, Manfredi S, et al. Time trends in the treatment and survival of recurrences from colorectal cancer. Ann Oncol 2005;16:756-761. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15790673. 1048. Primrose JN, Perera R, Gray A, et al. Effect of 3 to 5 years of scheduled CEA and CT follow-up to detect recurrence of colorectal cancer: the FACS randomized clinical trial. JAMA 2014;311:263-270. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24430319. 1049. Wille-Jorgensen P, Syk I, Smedh K, et al. Effect of More vs Less Frequent Follow-up Testing on Overall and Colorectal Cancer-Specific Mortality in Patients With Stage II or III Colorectal Cancer: The COLOFOL Randomized Clinical Trial. Jama 2018;319:2095-2103. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29800179. 1050. Verberne CJ, Zhan Z, van den Heuvel E, et al. Intensified follow-up in colorectal cancer patients using frequent Carcino-Embryonic Antigen (CEA) measurements and
CEA-triggered imaging: Results of the randomized "CEAwatch" trial. Eur J Surg Oncol 2015;41:1188-1196. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26184850. 1051. Rosati G, Ambrosini G, Barni S, et al. A randomized trial of intensive versus minimal surveillance of patients with resected Dukes B2-C colorectal carcinoma. Ann Oncol 2016;27:274-280. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26578734. 1052. Lepage C, Phelip JM, Cany L, et al. Effect of 5 years of imaging and CEA follow-up to detect recurrence of colorectal cancer: The FFCD PRODIGE 13 randomised phase III trial. Dig Liver Dis 2015;47:529-531. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25933809. 1053. Lepage C, Phelip JM, Cany L, et al. Effect of 5 years of imaging and CEA follow-up to detect recurrence of colorectal cancer (CRC) - PRODIGE 13 a FFCD phase III trial [abstract]. Annals of Oncology 2020;31:S410. Available at: https://doi.org/10.1016/j.annonc.2020.08.509. 1054. Lepage C, Phelip JM, Cany L, et al. Prognostic effect of imaging and CEA follow-up in resected colorectal cancer (CRC): Final results and relapse free survival (RFS) - PRODIGE 13 a FFCD phase III trial [abstract]. Annals of Oncology 2022;33:S1395. Available at: https://doi.org/10.1016/j.annonc.2022.08.024. 1055. Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006;24:5313-5327. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17060676. 1056. Pfister DG, Benson AB, 3rd, Somerfield MR. Clinical practice. Surveillance strategies after curative treatment of colorectal cancer. N Engl J Med 2004;350:2375-2382. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15175439. 1057. Patel K, Hadar N, Lee J, et al. The lack of evidence for PET or PET/CT surveillance of patients with treated lymphoma, colorectal cancer, and head and neck cancer: a systematic review. J Nucl Med 2013;54:1518-1527. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23776200. 1058. Green RJ, Metlay JP, Propert K, et al. Surveillance for second primary colorectal cancer after adjuvant chemotherapy: an analysis of Intergroup 0089. Ann Intern Med 2002;136:261-269. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11848723. 1059. Meyerhardt JA, Mangu PB, Flynn PJ, et al. Follow-up care, surveillance protocol, and secondary prevention measures for survivors of colorectal cancer: american society of clinical oncology clinical practice guideline endorsement. J Clin Oncol 2013;31:4465-4470. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24220554. 1060. Follow-up care, surveillance protocol, and secondary prevention measures for survivors of colorectal cancer. Cancer Care Ontario; 2016. Available at: https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/256. Accessed November 17, 2020. 1061. Steele SR, Chang GJ, Hendren S, et al. Practice guideline for the surveillance of patients after curative treatment of colon and rectal cancer. Dis Colon Rectum 2015;58:713-725. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26163950. 1062. Butte JM, Gonen M, Allen PJ, et al. Recurrence after partial hepatectomy for metastatic colorectal cancer: potentially curative role of salvage repeat resection. Ann Surg Oncol 2015;22:2761-2771. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25572686. 1063. Hyder O, Dodson RM, Mayo SC, et al. Post-treatment surveillance of patients with colorectal cancer with surgically treated liver metastases. Surgery 2013;154:256-265. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23889953. 1064. Litvka A, Cercek A, Segal N, et al. False-positive elevations of carcinoembryonic antigen in patients with a history of resected colorectal cancer. J Natl Compr Canc Netw 2014;12:907-913. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24925201. 1065. Nicholson BD, Shinkins B, Pathiraja I, et al. Blood CEA levels for detecting recurrent colorectal cancer. Cochrane Database Syst Rev 2015:CD011134. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26661580. 1066. Nicholson BD, Shinkins B, Mant D. Blood measurement of carcinoembryonic antigen level for detecting recurrence of colorectal cancer. JAMA 2016;316:1310-1311. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27673308. 1067. Lu YY, Chen JH, Chien CR, et al. Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis 2013;28:1039-1047. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23407908. 1068. Khan K, Athauda A, Aitken K, et al. Survival Outcomes in Asymptomatic Patients With Normal Conventional Imaging but Raised Carcinoembryonic Antigen Levels in Colorectal Cancer Following Positron Emission Tomography-Computed Tomography Imaging. Oncologist 2016;21:1502-1508. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27742904. 1069. Martin EW, Minton JP, Carey LC. CEA-directed second-look surgery in the asymptomatic patient after primary resection of colorectal carcinoma. Ann Surg 1985;202:310-317. Available at: http://www.ncbi.nlm.nih.gov/pubmed/4037904. 1070. Hewitt M, Greenfield S, Stovall E, eds. From Cancer Patient to Cancer Survivor: Lost in Transition. Committee on Cancer Survivorship: Improving Care and Quality of Life, Institute of Medicine and National Research Council: National Academy of Sciences; 2006. Available at: http://www.nap.edu/catalog/11468.html. 1071. El-Shami K, Oeffinger KC, Erb NL, et al. American Cancer Society Colorectal Cancer Survivorship Care Guidelines. CA Cancer J Clin 2015;65:428-455. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26348643. 1072. Desnoo L, Faithfull S. A qualitative study of anterior resection syndrome: the experiences of cancer survivors who have undergone resection surgery. Eur J Cancer Care (Engl) 2006;15:244-251. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16882120. 1073. Downing A, Morris EJ, Richards M, et al. Health-related quality of life after colorectal cancer in England: a patient-reported outcomes study of individuals 12 to 36 months after diagnosis. J Clin Oncol 2015;33:616-624. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25559806. 1074. Gami B, Harrington K, Blake P, et al. How patients manage gastrointestinal symptoms after pelvic radiotherapy. Aliment Pharmacol Ther 2003;18:987-994. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14616164. 1075. McGough C, Baldwin C, Frost G, Andreyev HJ. Role of nutritional intervention in patients treated with radiotherapy for pelvic malignancy. Br J Cancer 2004;90:2278-2287. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15162154. 1076. Schneider EC, Malin JL, Kahn KL, et al. Surviving colorectal cancer: patient-reported symptoms 4 years after diagnosis. Cancer 2007;110:2075-2082. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17849466. 1077. Sprangers MA, Taal BG, Aaronson NK, te Velde A. Quality of life in colorectal cancer. Stoma vs. nonstoma patients. Dis Colon Rectum 1995;38:361-369. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7720441. - 1078. Hong KS, Oh BY, Kim EJ, et al. Psychological attitude to self-appraisal of stoma patients: prospective observation of stoma duration effect to self-appraisal. Ann Surg Treat Res 2014;86:152-160. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24761424. - 1079. Jansen L, Herrmann A, Stegmaier C, et al. Health-related quality of life during the 10 years after diagnosis of colorectal cancer: a population-based study. J Clin Oncol 2011;29:3263-3269. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21768465. - 1080. Lynch BM, Steginga SK, Hawkes AL, et al. Describing and predicting psychological distress after colorectal cancer. Cancer 2008;112:1363-1370. Available at: https://www.ncbi.nlm.nih.gov/pubmed/18318044. - 1081. Mols F, Beijers T, Lemmens V, et al. Chemotherapy-induced neuropathy and its association with quality of life among 2- to 11-year colorectal cancer survivors: results from the population-based PROFILES registry. J Clin Oncol 2013;31:2699-2707. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23775951. - 1082. Thong MS, Mols F, Wang XS, et al. Quantifying fatigue in (long-term) colorectal cancer survivors: a study from the population-based patient reported outcomes following initial treatment and long term evaluation of survivorship registry. Eur J Cancer 2013;49:1957-1966. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23453750. - 1083. Vardy JL, Dhillon HM, Pond GR, et al. Cognitive function in patients with colorectal cancer who do and do not receive chemotherapy: a prospective, longitudinal, controlled study. J Clin Oncol 2015;33:4085-4092. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26527785. - 1084. Wright P, Downing A, Morris EJ, et al. Identifying social distress: a cross-sectional survey of social outcomes 12 to 36 months after colorectal cancer diagnosis. J Clin Oncol 2015;33:3423-3430.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/26282636. - 1085. Denlinger CS, Barsevick AM. The challenges of colorectal cancer survivorship. J Natl Compr Canc Netw 2009;7:883-893; quiz 894. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19755048. - 1086. Faul LA, Shibata D, Townsend I, Jacobsen PB. Improving survivorship care for patients with colorectal cancer. Cancer Control 2010;17:35-43. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20010517. - 1087. Meyerhardt JA, Heseltine D, Niedzwiecki D, et al. Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol 2006;24:3535-3541. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16822843. - 1088. Meyerhardt JA, Giovannucci EL, Ogino S, et al. Physical activity and male colorectal cancer survival. Arch Intern Med 2009;169:2102-2108. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20008694. - 1089. Campbell PT, Patel AV, Newton CC, et al. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol 2013;31:876-885. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23341510. - 1090. Kuiper JG, Phipps Al, Neuhouser ML, et al. Recreational physical activity, body mass index, and survival in women with colorectal cancer. Cancer Causes Control 2012;23:1939-1948. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23053793. - 1091. Arem H, Pfeiffer RM, Engels EA, et al. Pre- and postdiagnosis physical activity, television viewing, and mortality among patients with colorectal cancer in the National Institutes of Health-AARP Diet and Health Study. J Clin Oncol 2015;33:180-188. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25488967. - 1092. Je Y, Jeon JY, Giovannucci EL, Meyerhardt JA. Association between physical activity and mortality in colorectal cancer: A meta-analysis of prospective cohort studies. Int J Cancer 2013;133:1905-1913. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23580314. - 1093. Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol 2014;25:1293-1311. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24644304. - 1094. Wu W, Guo F, Ye J, et al. Pre- and post-diagnosis physical activity is associated with survival benefits of colorectal cancer patients: a systematic review and meta-analysis. Oncotarget 2016;7:52095-52103. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27437765. - 1095. Ho M, Ho JWC, Fong DYT, et al. Effects of dietary and physical activity interventions on generic and cancer-specific health-related quality of life, anxiety, and depression in colorectal cancer survivors: a randomized controlled trial. J Cancer Surviv 2020;14:424-433. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32072434. - 1096. Dignam JJ, Polite BN, Yothers G, et al. Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer. J Natl Cancer Inst 2006;98:1647-1654. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17105987. - 1097. Sinicrope FA, Foster NR, Yothers G, et al. Body mass index at diagnosis and survival among colon cancer patients enrolled in clinical trials of adjuvant chemotherapy. Cancer 2013;119:1528-1536. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23310947. - 1098. Campbell PT, Newton CC, Dehal AN, et al. Impact of body mass index on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort. J Clin Oncol 2012;30:42-52. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22124093. - 1099. Lee J, Meyerhardt JA, Giovannucci E, Jeon JY. Association between body mass index and prognosis of colorectal cancer: a meta-analysis of prospective cohort studies. PLoS One 2015;10:e0120706. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25811460. - 1100. Cespedes Feliciano EM, Kroenke CH, Meyerhardt JA, et al. Metabolic dysfunction, obesity, and survival among patients with early-stage colorectal cancer. J Clin Oncol 2016;34:3664-3671. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27601537. - 1101. Daniel CR, Shu X, Ye Y, et al. Severe obesity prior to diagnosis limits survival in colorectal cancer patients evaluated at a large cancer centre. Br J Cancer 2016;114:103-109. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26679375. - 1102. Doleman B, Mills KT, Lim S, et al. Body mass index and colorectal cancer prognosis: a systematic review and meta-analysis. Tech Coloproctol 2016;20:517-535. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27343117. - 1103. Laake I, Larsen IK, Selmer R, et al. Pre-diagnostic body mass index and weight change in relation to colorectal cancer survival among incident cases from a population-based cohort study. BMC Cancer 2016;16:402. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27387027. - 1104. Renfro LA, Loupakis F, Adams RA, et al. Body mass index is prognostic in metastatic colorectal cancer: pooled analysis of patients from first-line clinical trials in the ARCAD database. J Clin Oncol 2016;34:144-150. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26503203. - 1105. Kroenke CH, Neugebauer R, Meyerhardt J, et al. Analysis of body mass index and mortality in patients with colorectal cancer using causal diagrams. JAMA Oncol 2016;2:1137-1145. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27196302. - 1106. Renehan AG, Sperrin M. The obesity paradox and mortality after colorectal cancer: a causal conundrum. JAMA Oncol 2016;2:1127-1129. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27195485. - 1107. Meyerhardt JA, Niedzwiecki D, Hollis D, et al. Association of dietary patterns with cancer recurrence and survival in patients with stage III colon cancer. JAMA 2007;298:754-764. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17699009. - 1108. Meyerhardt JA, Sato K, Niedzwiecki D, et al. Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Natl Cancer Inst 2012;104:1702-1711. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23136358. - 1109. Fuchs MA, Sato K, Niedzwiecki D, et al. Sugar-sweetened beverage intake and cancer recurrence and survival in CALGB 89803 (Alliance). PLoS One 2014;9:e99816. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24937507. - 1110. Rock CL, Doyle C, Demark-Wahnefried W, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin 2012;62:242-274. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/22539238. - 1111. Hawkes AL, Chambers SK, Pakenham KI, et al. Effects of a telephone-delivered multiple health behavior change intervention (CanChange) on health and behavioral outcomes in survivors of colorectal cancer: a randomized controlled trial. J Clin Oncol 2013;31:2313-2321. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23690410. - 1112. Sun V, Grant M, Wendel CS, et al. Dietary and behavioral adjustments to manage bowel dysfunction after surgery in long-term colorectal cancer survivors. Ann Surg Oncol 2015;22:4317-4324. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26159443. - 1113. Cai H, Zhang G, Wang Z, et al. Relationship between the use of statins and patient survival in colorectal cancer: a systematic review and meta-analysis. PLoS One 2015;10:e0126944. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26030771. - 1114. Cardwell CR, Hicks BM, Hughes C, Murray LJ. Statin use after colorectal cancer diagnosis and survival: a population-based cohort study. J Clin Oncol 2014;32:3177-3183. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25092779. - 1115. Bains SJ, Mahic M, Myklebust TA, et al. Aspirin as secondary prevention in patients with colorectal cancer: an unselected population-based study. J Clin Oncol 2016;34:2501-2508. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27247217. - 1116. Bastiaannet E, Sampieri K, Dekkers OM, et al. Use of aspirin postdiagnosis improves survival for colon cancer patients. Br J Cancer 2012;106:1564-1570. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22454078. - 1117. Chan AT, Ogino S, Fuchs CS. Aspirin use and survival after diagnosis of colorectal cancer. JAMA 2009;302:649-658. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19671906. - 1118. Goh CH, Leong WQ, Chew MH, et al. Post-operative aspirin use and colorectal cancer-specific survival in patients with stage I-III colorectal cancer. Anticancer Res 2014;34:7407-7414. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25503181. - 1119. Li P, Wu H, Zhang H, et al.
Aspirin use after diagnosis but not prediagnosis improves established colorectal cancer survival: a meta-analysis. Gut 2015;64:1419-1425. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25239119. - 1120. McCowan C, Munro AJ, Donnan PT, Steele RJ. Use of aspirin post-diagnosis in a cohort of patients with colorectal cancer and its association with all-cause and colorectal cancer specific mortality. Eur J Cancer 2013;49:1049-1057. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/23182687. - 1121. Ng K, Meyerhardt JA, Chan AT, et al. Aspirin and COX-2 inhibitor use in patients with stage III colon cancer. J Natl Cancer Inst 2015;107:345. Available at: - http://www.ncbi.nlm.nih.gov/pubmed/25432409. 1122. Domingo E, Church DN, Sieber O, et al. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol 2013;31:4297-4305. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24062397. U.S. Preventive Services Task Force. Ann Intern Med 2016;164:826-835. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27064261. 1123. Elwood PC, Morgan G, Pickering JE, et al. Aspirin in the treatment of cancer: reductions in metastatic spread and in mortality: a systematic review and meta-analyses of published studies. PLoS One 2016;11:e0152402. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27096951. 1124. Liao X, Lochhead P, Nishihara R, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 2012;367:1596-1606. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23094721. 1125. Nan H, Hutter CM, Lin Y, et al. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA 2015;313:1133-1142. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25781442. 1126. Reimers MS, Bastiaannet E, Langley RE, et al. Expression of HLA class I antigen, aspirin use, and survival after a diagnosis of colon cancer. JAMA Intern Med 2014;174:732-739. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24687028. 1127. Paleari L, Puntoni M, Clavarezza M, et al. PIK3CA mutation, aspirin use after diagnosis and survival of colorectal cancer. a systematic review and meta-analysis of epidemiological studies. Clin Oncol (R Coll Radiol) 2016;28:317-326. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26712086. 1128. Dulai PS, Singh S, Marquez E, et al. Chemoprevention of colorectal cancer in individuals with previous colorectal neoplasia: systematic review and network meta-analysis. Bmj 2016;355:i6188. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27919915. 1129. Whitlock EP, Burda BU, Williams SB, et al. Bleeding risks with aspirin use for primary prevention in adults: a systematic review for the